ACLS for the Clinical Pharmacist

Krista A. Wahby, Pharm.D.
Dale Tucker, RPh, MEd, BCPS
June 2007
Objectives

- To review the importance of having a pharmacist attend codes
- To familiarize the pharmacist with the ACLS protocols
- To review routes of administration for medications used in code blue emergencies
- To introduce several common ECG rhythms
- To identify and discuss the most common drugs used by the ACLS algorithms
Why Involve Pharmacist?

- **Implements outcomes in Code Blue**
 - *Pharmacotherapy* 2007. Apr 27(4);481-93.
 - *Pharmacotherapy* 1999. 19(5);556-64.
- Calculate drug doses
- Drug information
- Preparation of drugs
- Source of quick access for medications not on crash cart
- Assessment of patient’s allergies and medication usage
Common Principles in New ACLS Guidelines - 2005

1. Early, effective bystander CPR
2. Early defibrillation - Public Access Defibrillation
3. Minimal interruptions in chest compressions
4. Establishing a specific diagnosis by ECG
5. Choose one antiarrhythmic agent
 One, and only one antiarrhythmic should be used.
6. If IV access is not established, Intraosseous cannulation is the first line alternative and endotracheal is an alternative.
Pharmacist Involvement

- Pharmacists should KNOW:

 How? ...to use an agent
 Why? ...we use an agent
 When? ...to use an agent
 What? ...to watch for
How To Use the Medication?
Routes of Medications

- **IV Push (IVP)**
 - Preferred route – fast, convenient, + bioavailability
 - Peripheral – flush w/ 20cc bolus and elevate arm for 10-20 seconds. Peak effect takes 1-2 minutes
 - Central line should be placed (however, keep in mind it is a relative contraindication for thrombolytic therapy)

 - **V** - vasopressin
 - **A** – amiodarone, atropine, adenosine
 - **L** – lidocaine
 - **E** – epinephrine
Intravenous Infusion

- Intravenous infusion
 - Medications for continuous IV infusion only
 - P – procainamide
 - I – isoproterenol
 - N – norepinephrine
 - D – dopamine
 - Central line preferred, however, peripheral OK in emergency
Intraosseous Administration

- When IV access not available
- Gives access to a noncollapsible venous access route
- Important when patients are in shock with peripheral vasoconstriction
Endotracheal Administration

- When IV access is not available
- Doses usually 2-2.5 times higher
 - Absorption occurs at alveolar capillary interface
 - Dilute drugs with 10ml 0.9% NaCl or Water to allow for adequate delivery (H2O preferred)
 - L – lidocaine (2-4 mg/kg)
 - E – epinephrine (2-2.5 mg)
 - A – atropine (2-3 mg)
 - N – naloxone (0.8-1.6 mg)
 - V – vasopressin (80-100 Units)
HOW?
Medication Administration

- Do not interrupt chest compressions
- Time to maximum effect of drug may depend on the distance from the heart
- Administer 10-20ml NS after each drug administered (20ml if peripheral administration & elevate arm)
- Have medications labeled and ready in advance
- Best to give immediately after shock
WHEN TO USE WHAT Medication?
Use of Algorithms

- Meant to treat broadest range of patients
- Memory aids
- Use “wisely,” not blindly
- Not meant to replace clinical judgment
 - Where to find?
 - American Heart Association
 - Attached to crash cart
 - Included in DMC Tier 2 policy
 - aclsn.net on the web
Check Rhythm
ECG Rhythms

- Wave forms
ECG Rhythms

- Normal sinus rhythm

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-100 bpm</td>
<td>Regular</td>
<td>Before each QRS, identical</td>
<td>.12 to .20</td>
<td><.12</td>
</tr>
</tbody>
</table>
ECG Rhythms

- **Asystole**

 Ventricular Asystole (standstill)

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>Absent</td>
<td>Absent or present</td>
<td>N/A</td>
<td>Absent</td>
</tr>
</tbody>
</table>

- **Bradycardia**

 Sinus Bradycardia

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
</table>
 | < 60 bpm | Regular | Before each QRS, identical | .12 to .20 | <.12 }
ECG Rhythms

- **Ventricular Tachycardia**

 ![Ventricular Tachycardia](image)

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>Regular</td>
<td>Absent or not related</td>
<td>N/A</td>
<td>≥ .12</td>
</tr>
</tbody>
</table>

- **Ventricular Fibrillation**

 ![Ventricular Fibrillation](image)

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-600</td>
<td>Extremely irregular</td>
<td>Absent</td>
<td>N/A</td>
<td>Fibrillatory baseline</td>
</tr>
</tbody>
</table>
ECG Rhythms

- Artifact (waveform interference)

AC Interference (60 cycle)

Sixty even, regular spikes in a 1 second interval caused by electrical current near the patient
Cardiac Arrest Management

1. Pulseless Cardiac Arrest – i.e. ASYSTOLE and PEA
2. VENTRICULAR FIBRILLATION and PULSELESS V.TACH
Pulseless Arrest Algorithm

- Minimize interruptions in chest compressions
- Limit pulse and rhythm checks
- Do not check pulse immediately after shock – give 5 cycles, then check!
- Once advanced airway in place – do not interrupt compressions
Asystole and Pulseless Electrical Activity (PEA)

- Asystole is a cardiac standstill
- PEA-pt has mechanical contractions but no pulse. Any rhythm possible
- Both are non-shockable rhythms
- Most do not survive
- Asystole means the patient’s life has ended

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>N/A</td>
<td>Absent</td>
</tr>
</tbody>
</table>
Asystole & PEA Algorithm

BLS Algorithm:
Call for help, give CPR
Give oxygen when available
Attach monitor/defibrillator when available

Check rhythm: shockable? YES or NO
If NO and **problem** is asystole/PEA

Resume CPR immediately for 5 cycles

Give vasopressor: **Epinephrine** or vasopressin
Consider **Atropine** for asystole or slow PEA rate

Give 5 cycles of CPR

Check rhythm: shockable? If no:
Asystole and PEA Algorithm

<table>
<thead>
<tr>
<th>P</th>
<th>Problem search via Differential Diagnosis table; treat accordingly. (PATCH 4MDs) Continue algorithm if indicated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Epinephrine 1 mg IVP/IO q3-5 min. OR Vasopressin 40 units IV/IO, once, in place of the first or second dose of epinephrine.</td>
</tr>
<tr>
<td>A</td>
<td>Atropine 1 mg IVP/IO q3-5 minutes; 3mg maximum.</td>
</tr>
</tbody>
</table>
Problem Search: Differential Diagnosis
PATCH(4) MDs

- **Pulmonary embolism**
 - Thrombolytics

- **Acidosis**
 - Bicarb./hyperventilation

- **Tension pneumothorax**
 - Thoracostomy

- **Cardiac tamponade**
 - Pericardiocentesis

- **Hyperkalemia**
 - HCO3, CaCl, Ins/Glc, HD, diuresis, kayexylate

- **Hypokalemia**

- **Hypovolemia**

- **Hypoxia**

- **Myocardial infarct**
 - ACS protocol
 - Avoid BB if cocaine

- **Drugs**

- **Shivering**
Basic Pharmacology Review
Vasoactive Receptor Effects

- α_1 – VASOCONSTRICTION of arteries and veins
- α_2 – Feedback and Vasoconstriction
 - Decreases NE release
- β_1 – INOTROPE & CHRONOTROPE
- β_2 – VASODILATION (skin, kidneys, skeletal muscles, visceral and pulmonary arteries) and BRONCHODILATION
Vasopressor Therapy

- Increases SBP by increasing preload and ventricular filling pressure
- Enhance organ perfusion, increase cerebral and coronary perfusion pressures (increases success of defibrillation)
- Mostly via α_1 stimulation and V_1 stimulation
- List the Vasopressors:
 - Epinephrine
 - Vasopressin
 - Norepinephrine
 - Phenylephrine
 - Dopamine
Inotropic Therapy

- Increase cardiac contractility and increase cardiac output (CO)
- Work via β1 stimulation and/or by increasing cAMP and Calcium influx
- List the Inotropes:
 - Dobutamine
 - Milrinone (or inamrinone)
 - Digoxin
 - Glucagon
Catecholamine Pharmacology

- Bind to β-adrenoreceptor and stimulate Gs protein
- Stimulates adenylate cyclase, \(\uparrow \) cAMP
- cAMP acts to INCREASE Ca INFLUX
- VASOCONSTRICTION, INOTROPY
E = Epinephrine

- 1mg IVP/IO every 3-5 minutes.

GOAL – Improve Perfusion to Essential Organs (Heart, Brain). Shifts blood centrally.

- **MOA** – Alpha and Beta Adrenergic Agonist
 - α_1 – Vasoconstriction. Increases BP; improves cerebral and coronary perfusion pressures
 - β_{1-2} - Stimulates the cardiac muscle increasing the strength of ventricular contraction. + inotrope and chronotrope. Does increase myocardial work
Epinephrine Side Effects

- Nervous system: anxiety, agitation
- Cardiovascular: dilated CM, LV dysfunction
- Psychiatric: disorientation, hallucinations
- Metabolic: acidosis, hypokalemia
- Renal: renal insufficiency
- Other: extravasation, skin necrosis
Vasopressin

- Vasopressin 40 units IVP/IO x 1 (2 vials required. Each vial = 20 Units)
- May replace 1st or 2nd dose of epinephrine
- Pharmacology: Endogenous ADH
 - Causes vasoconstriction at high doses by directly stimulating smooth muscle V_1 receptors
 - Dilates cerebral blood vessels
 - Coronary & renal vasoconstriction
Vasopressin Rationale

- Enhance organ perfusion
- Advantages over epinephrine?
 - Longer half-life (10-20 minutes)
- Not affected by acidosis
- Unique MOA - nonadrenergic
- Best outcomes in ASYSTOLE?
Vasopressin Side Effects

- GI: nausea, intestinal cramps
- Increased mesenteric vascular resistance
- Bronchial constriction
- Uterine contractions
- Extravasation - necrosis
A = Atropine

- 1mg IVP/IO every 3-5 minutes up to a maximum of 3 mg
 - Excessive parasympathetic tone may play a role in stopping ventricular and supraventricular pacemaker activity
 - Avoid if lack of cardiac activity has a clear explanation such as hypothermia
Atropine Pharmacology

- Competitive antagonist of acetylcholine
- Vagolytic action causes restoration of heart rate and blood pressure
- Reverses cholinergic-mediated decreases in:
 - Heart rate
 - Systemic vascular resistance
 - Blood pressure
Atropine Side Effects

- Anticholinergic
 - Confusion
 - Blurred vision
 - Dry mouth, skin, nose
 - Constipation
 - Urinary retention
 - Lightheadedness
VF and PVT

- **VF** = ventricular fibrillation
 - Fibrillary contractions of the ventricular muscle due to rapid repetitive excitation of myocardial fibers without coordinated contraction of the ventricle
- **PVT** = pulseless ventricular tachycardia
 - An abnormally rapid ventricular rhythm with aberrant ventricular excitation most commonly associated with atrioventricular dissociation
 - The patient has no pulse
ECG Rhythms

- Ventricular fibrillation

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-600</td>
<td>Extremely irregular</td>
<td>Absent</td>
<td>N/A</td>
<td>Fibrillatory baseline</td>
</tr>
</tbody>
</table>
ECG Rhythms

- Ventricular tachycardia

Ventricular Tachycardia (3 or more consecutive beats)

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>Regular</td>
<td>Absent or not related</td>
<td>N/A</td>
<td>≥ .12</td>
</tr>
</tbody>
</table>
VF/PVT Algorithm: SCREAM

Give 1 shock
Resume CPR immediately for 5 cycles

Check rhythm: Shockable? YES or NO?

YES - Continue CPR while defibrillator is charging
Give 1 shock
Resume CPR immediately after the shock
When IV/PO available give vasopressor (epinephrine or vasopressin) during CPR before or after the shock

Check rhythm: if shockable

Continue CPR while defibrillator is charging
Give 1 shock
Resume CPR immediately after the shock
Consider antiarrhythmic medications (amiodarone, lidocaine, magnesium): give during CPR before or after the shock
After 5 cycles of CPR
Shock

- Manual biphasic
 - Device specific
 - Typically 120-200 J
 - If unknown, use 200 J
- AED
 - Device specific
- Monophasic
 - 360 J
VF/PVT Algorithm: SCREAM

<table>
<thead>
<tr>
<th></th>
<th>Shock</th>
<th>360J monophasic, 1st and subsequent shocks. Shock every 2 minutes if indicated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>CPR</td>
<td>After shock, immediately begin chest compressions followed by respirations for 2 minutes. Do not check rhythm or pulse.</td>
</tr>
<tr>
<td>C</td>
<td>Rhythm</td>
<td>Rhythm check after 2 minutes of CPR (and after every 2 minutes of CPR thereafter) and shock again if indicated. Check pulse only if an organized or non-shockable rhythm is present.</td>
</tr>
</tbody>
</table>

Implement the Secondary ABCD Survey. Continue this algorithm if indicated. Give drugs during CPR before or after shocking. Minimize interruptions in chest compressions to < 10 seconds. Consider differential diagnosis.
VF/PVT Algorithm: SCREAM

<table>
<thead>
<tr>
<th>E</th>
<th>Epinephrine</th>
<th>1mg IVP/IO q3-5 minutes or vasopressin 40 units IV/IO, once, in place of the 1st or 2nd dose of epinephrine.</th>
</tr>
</thead>
</table>
| A | Antiarrhythmic Medications | Consider antiarrhythmics:
- **Any Legitimate Medication**
 - **Amiodarone** 300mg IVP/IO, may repeat once at 150mg in 3-5 minutes if VF/PVT persists or
 - **Lidocaine** (if amiodarone unavailable) 1-1.5mg/kg IVP/IO, may repeat X2, q5-10 min at 0.5-0.75mg/kg
 - Max LD= 3mg/kg
 - **Magnesium Sulfate** 1-2 gm IVP/IO diluted in 10m D5/W (5-20 min push) for torsades de pointes or suspected/known hypomagnesemia. |
Amiodarone

- 300mg IVP/IO once, then consider additional 150mg IVP/IO once
 - If pt is pulseless, give IVP, otherwise dilution with 20-30ml and a slower infusion results in less bradycardia, hypotension and phlebitis
 - Infusion OK peripherally if < 2mg/ml
 - Not for ET administration
Amiodarone

- MOA: Inhibits conduction through Sodium, Potassium and Calcium channels and α & β adrenergic blocking ability
- Inhibits adrenergic stimulation, prolongs the action potential and refractory period in myocardial tissue, and decreases AV conduction and sinus node function
- Based on ARREST and ALIVE Trials
- Side effects: hypotension, bradycardia, nausea, vomiting, tremor, dizziness, headache, phlebitis
Lidocaine

- 1-1.5 mg/kg first dose then 0.5-0.75 mg/kg
 IVP/IO q5-10 minutes
- Maximum of 3 doses or 3 mg/kg
- After return of ROSC infuse at 1-4 mg/min
 (50% reduction if cardiac or liver failure)
- Suppresses automaticity of conduction tissue and blocks both the initiation and conduction of nerve impulses
- Side effects: hypotension, headache, shivering
Magnesium

- 1-2 grams IVP/IO diluted in 10ml D5W over 5-20 minutes. If patient has pulse, can slow down infusion to 30-60 min

- INDICATION: torsades de pointes
 - Low magnesium causes inhibition of conduction through K+ channels in heart – prolongs AP and QT prolongation

- Side effects: flushing, somnolence, complete heart block, respiratory paralysis
Arrhythmia Management

-Bradycardia

-Tachycardia: SVT
Bradycardia

- Bradycardia:
 - HR < 60 beats/minute or when the heart rate is slower than expected

- Signs and symptoms might include:
 - Chest pain, shortness of breath
 - Hypotension, pulmonary edema, congestive heart failure
ECG Rhythms

- Sinus bradycardia

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>Rhythm</th>
<th>P Wave</th>
<th>PR interval (in seconds)</th>
<th>QRS (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 60 bpm</td>
<td>Regular</td>
<td>Before each QRS, identical</td>
<td>.12 to .20</td>
<td>< .12</td>
</tr>
</tbody>
</table>
Bradycardia Algorithm:

Pacing Always Ends Danger

Maintain patient airway; assist breathing as needed
Give oxygen
Monitor ECG, blood pressure, oximetry
Establish IV access

⇓

Signs/symptoms of poor perfusion caused by the bradycardia?
If yes:

⇓

Prepare for transcutaneous pacing
Consider atropine IV while awaiting pacer; if ineffective begin pacing
Consider epinephrine or dopamine infusion while awaiting pacer or if pacing ineffective

⇓

Prepare for transvenous pacing
Treat contributing causes
Consider expert consultation
Bradycardia Algorithm: Pacing Always Ends Danger

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Intervention</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacing</td>
<td>TCP</td>
<td>Immediately prepare for TCP with serious circulatory compromise due to bradycardia (especially high-degree blocks) or if atropine failed to increase rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consider medications while pacing is readied.</td>
</tr>
<tr>
<td>Always</td>
<td>Atropine</td>
<td>First line drug, 0.5mg IV/IO q3-5 min (maximum 3mg)</td>
</tr>
<tr>
<td>Ends</td>
<td>Epinephrine</td>
<td>Second line drugs to consider if atropine and/or TCP are ineffective. Use with extreme caution</td>
</tr>
<tr>
<td>Danger</td>
<td>Dopamine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-10 mcg/kg/min</td>
<td></td>
</tr>
</tbody>
</table>
Transcutaneous Pacing

- Used to speed up a cardiac rhythm that is too slow
- If considered, start immediately
- To be effective, must be performed early and combined with drug therapy
Transcutaneous Pacing Apparatus
Atropine

- Atropine 0.5 mg IV while awaiting pacer
 - 50% reduction in dose when compared with PEA algorithm
- May repeat to a total dose of 3 mg
- If ineffective, begin pacing
Epinephrine

- Consider epinephrine 2-10 mcg/min continuous infusion while awaiting pacer
- Use 1ml of the 1:1000 or 10 ml of the 1:10,000 in 500ml D5W
- Alternatively, 0.5 mg IVP boluses
 - To avoid tachyarrhythmias
 - Until continuous infusion available
 - Until pacemaker available
- Or if pacing ineffective
Dopamine

- Or consider dopamine 2-10 mcg/kg/min infusion while awaiting pacer or if pacing ineffective
- MOA: Precursor of norepinephrine, stimulates heart through both alpha- and beta-adrenergic receptors
- Increases both cardiac output and arterial perfusion pressure
Dopamine Side Effects

- Cardiovascular: ectopic heartbeats, tachycardia, vasoconstriction, hypotension, ventricular arrhythmias
- CNS: headache
- GI: nausea, vomiting
- Respiratory: dyspnea
- Other: Adrenal insufficiency
Tachycardia Algorithm

Assess and support ABCs as needed
- Give oxygen
- Monitor ECG, blood pressure, oximetry
- Identify and treat reversible causes

↓

Symptoms persist and patient **stable**

- Establish IV access
- Obtain **12-lead ECG** or rhythm strip
 - Is QRS narrow or wide?

↓

Narrow QRS (<0.12 sec) with regular rhythm
Tachycardia Algorithm (continued)

Attempt **vagal** maneuvers
Give **adenosine** 6mg rapid IVP
If no conversion, give 12mg rapid IVP
May repeat 12mg dose once

Does rhythm convert?
Note: Consider expert consultation

Yes: Probable reentry SVT. Observe for recurrence. Treat recurrence with adenosine or diltiazem (**Cardizem**) or beta-blockers.

or

No: Possible atrial flutter, ectopic atrial tachycardia, or junctional tachycardia. Control rate with diltiazem (**Cardizem**) or beta-blockers. Treat underlying cause. Consider expert consultation.
Tachycardia Algorithm

- Tachycardia is stable, narrow, and regular:
 - Yes 1-2-3, think SVT, then V-A-C

<table>
<thead>
<tr>
<th>1. Stable?</th>
<th>Yes: see question 2</th>
<th>No: unstable = immediate electrical cardioversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Narrow?</td>
<td>Yes: see question 3</td>
<td>No: wide = consult an expert with QRS ≥ 0.12 sec</td>
</tr>
<tr>
<td>3. Regular?</td>
<td>Yes: see mnemonic</td>
<td>No: irregular = consult an expert</td>
</tr>
</tbody>
</table>
Tachycardia Algorithm

- Yes 1-2-3, think SVT, then V-A-C
 - Vagal maneuvers, if this fails...
 - Adenosine 6 mg rapid IVP (may repeat X2, q1-2 min at 12mg)
 - Cardizem (diltiazem) managed by an expert if stable, narrow, regular tachyarrhythmia continues
Vagal Maneuvers

- **Valsalva’s maneuver**
 - A forcible exhalation effort against a closed glottis which results in an increase in intrathoracic pressure which interferes with venous return to the heart

- **Carotid sinus massage**
 - Firm rotatory pressure applied to one side of the neck over the carotid sinus in a supine patient to cause vagal stimulation in order to slow or terminate tachycardia
Adenosine

- To convert SVT: 6 mg rapid IVP over 1-3 sec followed by 20 ml saline flush; if rate does not convert in 1-2 min give 12 mg IVP & repeat 12 mg in 1-2 minutes again
 - Larger doses required for patients with significant blood levels of theophylline, caffeine, or theobromine
 - Reduce initial dose to 3 mg in patients taking dipyridamole or carbamazepine or those with transplanted hearts or if given by central venous access
Adenosine

- Slows conduction time through AV node, interrupts reentry pathways through AVN and restores NSR
- Side effects common but transient: flushing, dyspnea, chest pain
Diltiazem (Cardizem)

- Use if adenosine fails
- 15-20mg (0.25mg/kg) IVP over 2 min; if needed in 15 minutes give an IVP dose of 20-25mg (0.35mg/kg)
- Maintenance infusion dose is 5-15mg/hr
- Blocks conduction through the AV node
- Harmful if given to patients with atrial fibrillation or atrial flutter associated with known pre-excitation such as Wolf-Parkinson-White
Cases:

- **Rhythm:**

- **What is this?** Ventricular Fibrillation
- **Algorithm?** SCREAM
- **Drugs/Doses?**
 - Epi 1 mg q3-5min
 - Amiodarone 300mg IVP, may repeat with 150mg
Cases:

- **Rhythm:**

- **What is this?**
 - Asystole
 - PEA

- **Algorithm?**

- **Drugs/Doses?**
 - Epi 1 mg q3-5min (or vasopressin 40 Units IVP)
 - Atropine – 1mg q3-5 min to max dose = 3mg
Cases:

- **Rhythm:**

- **What is this?**
- **Algorithm?**
- **Drugs/Doses?**

- **Bradycardia**
- **Pacing Always Ends Danger**
- **Atropine 0.5 mg q3-5min to max = 3mg**
- **Epi 2-10 mcg/min**
- **Dopamine 2-10 mcg/kg/min**
Cases:

- **Rhythm:**

- **What is this?**
- **Algorithm?**
- **Drugs/Doses?**

- SVT
- Yes 1, 2, 3, then think VAC
- Adenosine 6mg IVP then 12mg IVP, then 12mg IVP
- Cardizem 15-20 mg IVP then 5-15 mg/hr
Other Code Situations

- **Anaphylaxis:**
 - Epi 0.3-0.5 mg IV, steroids, ranitidine, diphenhydramine

- **AFib:**
 - diltiazem, βB, digoxin, amiodarone, ibutilide

- **Hyperkalemia:**
 - Insulin + D50; CaCl; Bicarb; albuterol, dialysis, kayexylate, furosemide

- **Hypotension:**
 - Norepinephrine 5-20 mcg/min, Phenylephrine 20-180 mcg/min; Vasopressin 0.01-0.03 Units/min, Dopamine 10-20 mcg/kg/min
Other Code Situations

- **Pulmonary Embolism:**
 - Massive PE with shock or hemodynamic instability should receive tPA 100mg IVPB over 2 hr

- **Status Epilepticus:**
 - Lorazepam 0.1mg/kg IVP, Phenytoin 10-20 mg/kg IVPB or Fosphenytoin

- **Prolonged Code:**
 - Systemic acidosis ensues – NaBicarb may be appropriate
Induced Hypothermia

- Hypothermia for 24 hr
- Hypothermia After Cardiac Arrest (HACA) *NEJM 2002;346:557-63*
- Ice packs, Artic Sun Protocol, Cooling blankets
- Requires continuous sedative and analgesic infusions, meperidine for shivering and avoidance of anticoagulation
Take Away Points

- Most frequently used medications
 - Epinephrine: asystole, bradycardia, PEA, VF/PVT
 - Atropine: asystole, bradycardia, PEA
 - Vasopressin: asystole, PEA, VF/PVT
Take Away Points

- Medications IVPB only
 - P - procainamide
 - I - isoproterenol
 - N - norepinephrine
 - D - dopamine

- Medications IVP or IVPB
 - V - vasopressin
 - A – amiodarone, adenosine, atropine
 - L - lidocaine
 - E - epinephrine

- Tracheal administration
 - L – lidocaine
 - E – epinephrine
 - A – atropine
 - N – naloxone
 - V - vasopressin

- Doses usually 2-2.5 times those given IVP
- Follow each dose with 10 ml NS flush down tracheal tube if not diluted to that volume for administration
Supplemental Reading

- Pharmacotherapy considerations in advanced cardiac life support. Pharmacotherapy 2006;26(12):1703-1729
It's QUESTION TIME!!