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Abstract

Although significant progress has been made in unraveling the molecular mechanisms responsible for tobacco smoke toxicity and
carcinogenicity, only limited information is available concerning the mechanisms by which tar particles and the gaseous phase constituents of
tobacco smoke participate and contribute to carcinogenic processes in lung cancer.

The present review critically evaluates how metals contained in the tar particles and the gaseous phase of tobacco smoke play a leading role in
the carcinogenic process, taking into consideration the physiology and pathophysiology of the bronchial epithelium. Overwhelmingly, the
published data indicate that the bronchopulmonary epithelial cells may represent the first and most critical line of defense against cigarette smoke.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Cigarette smoke (CS) can be divided into two phases: the
gaseous phase and particulate matter (tar). Both phases are
harmful, containing high concentrations of toxic and
carcinogenic compounds [1] and are both associated with
diverse pulmonary disorders, including cancer. The metabolic
activation and detoxification mechanisms of these compounds
have been extensively studied [2]. Although it is well
established that tar contains a large number of carcinogens
[3], more recent publications suggest that chemicals in the
gaseous phase of tobacco smoke are of major importance in
the cytotoxic and carcinogenic effects of tobacco smoke on
the bronchopulmonary epithelial cells [4–6]. At present, it is
well known that for these lesions to occur, both phases of
tobacco smoke are required [7]. After decades of intensive
research, it has become apparent that, although there is
unlikely to be a single mechanism involved in tobacco
toxicity and carcinogenicity, some general principles have
emerged [2].

Cilia as a pulmonary defence mechanism

In cigarette smoke, four biological processes characterize the
kinetics of toxic substances: uptake, distribution, metabolic
transformation and elimination. Uptake means that the
chemicals enter the lung by inhalation; they are then quickly
distributed among the major organs [8]. From the 500 ml of
inhaled air during each inhalation, which contains 35 ml of
tobacco smoke, 350 ml are exhaled and 150 ml are entrapped
inside the bronchial tree. This entrapped air, mixed with tobacco
smoke, is further diluted 14 times with the inhaled air, each time
with 500 ml of air, in about one minute, until the next puff. This
results in an extreme dilution of the constituents of the tobacco
smoke in the inhaled air.

Daily, people inhale approximately 1010 of dust particles [9].
This figure increases significantly in smokers, because of the
inhalation of a large number of tar particles. Tar particles of
0.2–5 μm in diameter are deposited on the mucous covering
the cilia of the bronchopulmonary epithelium. The mucous,
which is an important source of antioxidants, protects the air-
ducts from the trachea to the end of the bronchioli. Each
bronchoepithelial cell has 200 cilia. These cilia exhibit
continual movement, which is directed from the end of the
bronchus towards the larynx, pushing the mucous (covering
the cilia) outwards [9]. The storing of tar particles on the layer
of the mucous is accompanied by an increase in mucous
production by the goblet cells and activation of the purification
mechanism. When the bronchial epithelial cells are stripped of
their defense mechanism against inhaled particles they become
the target of the toxic and potentially carcinogenic effects of
these particles.

The toxic effect of tobacco smoke on the
bronchopulmonary epithelium

The role of the gas phase components

At present, there are no clues as to which constituent(s) of the
gas phase of tobacco smoke is/are responsible for its
carcinogenic action. There is strong evidence that metabolically-
activated or direct action genotoxic components and inhibitors
of DNA repair in the gaseous phase of tobacco smoke may
contribute to DNA damage and to smoking-associated cancers
of the upper aerodigestive tract [10]. The gas phase contains
several groups of toxic compounds, most of which are well
known as animal carcinogens and/or possibly human carcino-
gens. These compounds listed in Table 1, are all able to induce
damage to the bronchoepithelial cells in humans and in
experimental animals [11,12]. Metabolites of two of these
compounds represent good examples to annotate and discuss.
Benzene, for example, has been classified as a “Group 2A
carcinogen” by the International Agency for Research on
Cancer (IARC) [13,14]. It is a clastogenic carcinogen, which
can induce DNA strand breaks, chromosomal mutations and
aneuploidy in mammalian cells [11]. It can also induce a high
frequency loss of heterozygosity on chromosome 11 in the
p53+/− of strain A/J mice [15]. Benzene must be metabolized in
vivo, to cause chromosomal changes, suggesting that the
metabolites of benzene are responsible for any cytogenetic
changes [16,17]. 1,3-Butadiene is also known to be a human
carcinogen, based on substantiated evidence of carcinogenicity
in studies in humans and experimental animals (rats and mice);
these studies indicate a causal relationship between exposure to



Table 1
Major groups of toxic and carcinogenic chemicals in the gas phase of tobacco
smoke

1. Hydrocarbons
Methyl-propane, Methyl-butane, Hexane, Ethylene, Acetylene, Propylene,

Butadiene, Isoprene, Pentadienes, Methyl-pentadienes, Ethyl-pentadienes
2. Aldehydes and Ketones
Formaldehyde, Acetaldehyde, Acrolein, Crotonaldehyde, Methacrolein,

Propionaldehyde, Isobutyraldehyde, Acetone, Propanone, Butanone
3. Nitriles and Amines
Methyl nitrile, Ethyl nitrile, Acetonitrile, Acrylonitrile, Benzonitrile,

Methacrylonitrile, Ethylamine, Benzylamine, Phenylamine
4. Aromatic Hydrocarbons
Benzene, Toluene, Ethyl-benzene, Xylenes, Styrene
5. Heterocyclic compounds of oxygen
Furan, Methyl furans, Dimethyl furans
6. Other volatile non-organic compounds
Hydrogen sulfide, Methyl mercaptan, Ethyl mercaptan, Sulfur dioxide,

Hydrogen cyanide, Ammonia, Nitrogen dioxide, Nitric oxide, Carbon
dioxide, Carbon monoxide
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1,3-butadiene and excess mortality from lymphatic and/or
hematopoietic cancers [18,19]. 1,3-Butadiene has been shown
to be metabolized to mutagenic and carcinogenic epoxides
(epoxybutene and diepoxybutane) [20–22].

The gaseous phase components of CS are transported freely
during inhalation, by simple diffusion, towards the broncho-
pulmonary epithelial cells. Their toxic activity on the cells
begins immediately, with the first puff, simply following the
laws of gases. The toxic components of the gaseous phase
harm the cilia of the bronchial epithelium and impair the
movement of the mucous by altering its viscosity and by
disturbing or paralyzing the ciliary beat [23–25]. Acrolein and
nitrogen dioxide are known to induce the loss of cilia in the
rodent respiratory tract [23,26]. At first the mobility of the cilia
is impaired, later they become inert and finally their structure
is destroyed. This results in the layer of the mucous covering
the cilia not being able to move normally towards the exterior
(the larynx) and it becomes stagnant in the alveoli, in the
bronchioli and on the walls of the large bronchi. Eventually,
the mucous remains in the interior of the bronchial tree, and in
combination with goblet cell hyperplasia, it can be an
important factor in causing obstruction of the small airways
[27].

The role of tar

The inhaled particles of tar are deposited on the lung tissue in
two distinct stages: 1) In the initial stage of smoking, when
anatomical/functional alterations do not exist in the lung tissue,
the very small particles of tar are deposited in the sub-epithelial
layer, in the lung interstitium and beyond the ciliated airways
[28] and, 2) in the long term, tar particles are deposited in the
area of ciliated airways where the mucociliary escalator is
destroyed by the gaseous phase constituents (acetaldehyde,
ammonia, hydrogen cynide and SO2) of tobacco smoke. If this
happens, the tar particles become continually entrapped in the
mucous which stagnates inside the bronchoalveolar space,
enriched with toxic/carcinogenic material [28].
For tar to exert its toxic and carcinogenic activity, prior
destruction of the bronchopulmonary protective mechanism
by the gaseous phase components seems to be necessary.
Then, the tar can cause lung damage at the point when, by
chance, an appropriate critical mass of carcinogenic elements
is created, mainly of some of the trace elements of heavy
metals (hexavalent chromium [29], arsenic [30], lead [31],
mercury [32], nickel [33,34] and in particular cadmium in
ionic form [35–43]). However, the extremely low concentra-
tions of the toxic metals in tobacco smoke (in ng per
cigarette: Hg 5.4, Ni 11.95-75, Pb 12.6, Cd 116, Cr 4.5) and
their thinning out in an extremely large volume of
atmospheric air during inhalation (7L/min), result in a
tremendous dispersion of these molecules on a huge surface
of lung tissue (∼70m2). Yet, if mucous enriched with
tobacco smoke constituents (mainly with metals and Poly-
cyclic Aromatic Hydrocarbons (PAHs)) stagnates inside the
bronchoalveolar spaces, and an appropriate quantity of
carcinogenic molecules accidentally becomes concentrated
in a certain area of the lung tissue then, the adoptive and
repairing capacities of the lung epithelial cells fail, ensuring
a suitable environment for the carcinogenic process to begin.
The continuous enrichment of the mucous with the
carcinogenic compounds of tobacco smoke can be followed
by the progressive accumulation of multiple genetic changes
which underline the multi-step nature of tumorigenesis [44].
It has been proposed that the total accumulation of genetic
alterations rather than their relative order, is more important
for carcinogenesis [45,46], since the potency of a genotoxic
compound depends not only on its capability to cause DNA
damage, but also on the cell's capacity to repair the specific
damage [47].

The role of metals

Certain metals which exist in cigarette smoke and thus are
inhaled during smoking can cause serious diseases, including
lung cancer [48–51] Recent studies have shown that
carcinogenicity due to metals is, in general, the result of the
production of the reactive oxygen species [52–54].

Inhaled metals are not biodegradable and as a result they
are deposited and remain for long periods in various areas of
the pulmonary tissue. Some metals, including zinc, copper,
iron and calcium actively participate in diverse, important
cellular activities, such as the control of gene transcription,
neural conductivity, oxygen uptake from the lungs and
transfer to peripheral tissues, various enzymic functions,
cellular respiration, oxidation-reduction activities and the
control of cellular apoptosis. Some toxic metals are able to
mimic the functions of “useful” bio-metals and as a
consequence, to substitute them into the various cellular
processes, thus causing serious malfunctions to different vital
cellular activities. In this way, toxic metals are able to activate
and/or deactivate the cellular functions controlled by other
non-harmful metals which are useful to life. In some cases,
biologically useful metals could, under certain conditions,
become toxic.
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Toxicity of chromium

Chromium salts, among which is chromium dichromate
(K2Cr2O7), comprise an example of mutagenicity, genotoxicity
and carcinogenicity [55,56]. Cr(VI) as chromate salt (CrVIO4

2−)
easily penetrates the cell membrane, probably through the ion
channels [57]. Intracellular chromium reduction is considered as
a necessary step for the carcinogenic action of the ion metal.
The intracellular reduction product of Cr(VI) is Cr(III) [58]. The
intermediate products of the biological reduction of Cr(VI)
include Cr(V), Cr(IV), sulfur radicals (RSU), carbon centered
radicals (RU) and reactive oxygen species (ROS) [59,60]. Low
molecular weight cellular constituents reduce Cr(VI) in vitro at
normal pH. These constituents are glutathione (GSH) [61,62],
cysteine [63], lipoic acid [64], molecules that contain diols such
as NAD(P)H, ribose, fructose and arabinose [65,66] as well as
ascorbate [67]. Among these components, ascorbate and GSH
are the best non-enzymic candidate compounds. The reduction
of Cr(VI) by GSH creates glutathionyl radicals (GSU) [61,62]
and Cr(V) and Cr(IV) complexes [68]. These two stable
compounds Cr(V) and Cr(IV) are used as models for the study
of the role of intracellular Cr(IV) and Cr(V) in the mechanisms
of carcinogenicity by Cr(VI). Cr(V) and Cr(IV) react with H2O2

and produce hydroxyl radicals (UOH) [67]:

CrðVÞ þ H2O2→CrðVIÞ þUOHþ OH−

CrðIVÞ þ H2O2→CrðVÞ þUOHþ OH−

The glutathionyl radical may react with other thiol molecules
to generate O2

−U radicals:

RSUþ RSH→RSSR−Uþ Hþ

RSSR−Uþ O2→RSSRþ O2
−U

The formation of O2
−S could then lead to the formation of

H2O2.
Enzymic factors may also function as Cr(VI) reductants, as

for example, glutathione reductase (GSSG-R) [69–71], lipoyl-
dehydrogenase and NADP+ ferredoxin oxidoreductase
[72,73]. In the presence of NAD(P)H, glutathione reduces
Cr(VI) to Cr(V) which is identified as the Cr(V)-NADPH
complex. In vivo, it is likely that NADPH flavoenzymes and not
GSH or ascorbate are the major one-electron Cr(VI) reductants
[74]. Cr(IV) is a potent intermediate that can produce UOH
radicals from H2O2 through a Fenton-type reaction as shown
above [67].

Chromium (IV) inside the cells is reduced to Cr(III). Cr(III)
inside the cell can produce hydroxyl radicals fromH2O2 in a pH-
dependent process.

CrðIIIÞ þ H2O2→CrðIVÞ þUOHþUOH
The role of free radicals in Cr(VI)-induced carcinogenesis:
DNA damage

When DNA is incubated with Cr(VI) and ascorbate, a
significant number of DNA strand breaks is produced. The
addition of H2O2 effectively promotes DNA damage. The
number of DNA fragments is directly related to the number of
free radicals. The latter react with guanine at various
positions. Among them the best studied is 8-hydroxy-
deoxyguanosine (8-OHdG) [75]. The formation of this adduct
is considered as an indicator of ROS implication in the
carcinogenic mechanism. It has been shown that hydroxyl
radicals (UOH) created by Cr(V) and Cr(IV) cause the
hydroxylation of 2-deoxyguanosine (dG) and the formation
of 8-OHdG [67,76].

NF-kB and AP-1 activation
Cr(VI) can cause NF-kB activation in Jurkat cells [77]. UOH

radicals produced during the Fenton-type reaction from Cr(V)
and Cr(IV) play an important role in the activation mechanism
of NF-kB by Cr(VI). Cr(VI) may also cause the expression of
the c-myc oncogene through NF-kB activation. The ROS are
used as an activation signal which initiates the activation of
AP-1 and NF-kB in response to the Cr(VI) stimulus, while
p38 and JNK act as executing kinases for the activation of
AP-1 and NF-kB respectively.

p53 activation
The tumor-suppressor protein p53 plays an important role in

protecting cells from oncogenic damage. Cr(VI) may activate
p53 in human epithelial cells [60]. Superoxide dismutase which
produces H2O2 from O2

−S, increases p53 activity [78]. Catalase,
which consumes H2O2 limits the formation of peroxide-driven
oxidants and represses p53 activation. NADPH which accel-
erates the one-electron reduction during transition from Cr(VI)
to Cr(V) and increases the production of UOH radicals, induces
p53 activation. Consequently, the UOH radicals produced
during the reduction of Cr(VI) are responsible for p53
activation (Fig. 1).

Apoptosis
It has been proven that Cr(VI) can cause apoptosis [79].

Cr-induced apoptosis depends on the p53 state, since
mutations in the p53 gene facilitate the development of
resistance to apoptosis and increased survival of the damaged
cells. The ROS produced by Cr(VI) play a dual role in the
mechanism of carcinogenesis: they cause genetic damage
and apoptosis. Cr(VI)-induced carcinogenesis depends on the
balance between these two processes (Fig. 2). Apart from Cr
(VI), other carcinogenic metals can cause apoptotic cell death
[80,81].

Termination of the cell cycle
The cell cycle controls the initiation of DNA division and

mitosis, in order to assure that the genome remains intact.
Lack of fidelity during DNA division, which may arise from
a mutation, can lead to cell death or cancer. It has been
verified that 1) Cr(VI) can cause cell cycle arrest at the G2/M
phase in human lung epithelial cells A549 [82], 2) while
Cr(VI) at relatively low concentrations causes cell cycle arrest,
at high concentrations it causes apoptosis and, 3) the ROS
produced after cell exposure to Cr(IV) are involved in this cell
cycle arrest. Hydrogen peroxide is a key molecule in this
process.



Fig. 1. Molecular carcinogenic effects of chromium. Chromium (VI) is reduced in vitro, at normal pH in the presence of low molecular weight cellular constituents
such as NAD(P)H. The reduction of Cr(VI) creates two stable compounds, Cr(V) and Cr(IV) which react with H2O2 and produce hydroxyl radicals (

SOH). Hydroxyl
radicals induce DNA damage, recognized by a ‘sensor’ molecule that identifies a specific type of lesion, possibly by the p53 protein. The sensor modifies p53 by
phosphorylation. A modified p53 and an allosteric change in its molecule permit DNA binding to a specific sequence regulating several downstream genes (p21,
MDM2, GADD45, Bax, IGFBP). Two signaling pathways for cellular apoptosis are possible: one recruiting transcription and one inducing direct signaling with no
transcription of downstream genes required.
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Toxicity of cadmium

Cadmium is among the most toxic compounds in cigarette
smoke. The daily Cd intake by the smoker is dose-dependent on
the number of cigarettes smoked [83]. Cadmium levels in the
lipoid tissue of smokers are four times higher than that of non-
smokers (10 ng/g) [84]. Cadmium levels of 3.0 μg/g dry tissue
have been found in the pulmonary tissue of smokers compared
to 1.1 μg/g in non-smokers. This finding can be used as an
indicator of pulmonary damage [85], since the life span of Cd in
human lungs is calculated to be equal to 9.4 years.

Cadmium genotoxicity
The basic mechanisms involved in carcinogenesis due to

exposure to cadmium are gene deregulation, oxidative stress,
E-cadherin dysfunction and the inhibition of DNA repair and
its contribution to apoptosis (Fig. 2).

Gene deregulation and information transfer
The deregulation of gene expression is considered to be the

most important factor in a multi-stage model of chemical
carcinogenesis. In particular, the induction of cellular proto-
oncogenes [86] and the stimulation of cellular proliferation [87],
play a very important role in the proliferation process stage,
after an initial mutagenic incident.

The early and immediate response genes (IERGs) are
primary oncogenes which undergo early transcriptional activa-
tion when resting cells are exposed to mitogenic compounds,
such as cadmium. They code for transcriptional factors and play
an important role in chemical carcinogenesis. The products of
IERGs constitute mitogenic growth signals that stimulate the
proliferation of cells and they are considered to be important
factors in a multi-stage carcinogenic model [86]. Cell exposure
to cadmium induces the expression of many “stress” genes, such
as the genes that code for metallothioneine for heat-stress
proteins (HSPs), those that participate in oxidative stress
response or those that participate in glutathione synthesis
(GSH). Inside the cell, cadmium induces the production of
denatured or pathologic proteins by reacting with adjacent
thiolic groups or by substituting zinc (Zn) in protein molecules
that contain zinc (HSP induction signal) [88]. Cell exposure to
cadmium results in the significant induction of genes HSP10,
HSP32, HSP40, HSP60, HSP70, HSP89, HSP90 and HSP110.

Genes that control glutathione and thiol proteins
Glutathione and other proteins that contain thiol groups are

key players in cellular defense against cadmium toxicity and
carcinogenicity. The ionic cadmium (Cd2+), which is consid-
ered responsible for its toxicity and carcinogenicity, is
eliminated by glutathione and thus its reaction with important
cellular targets is prevented. The GSH reducing cycle which
induces glutathione peroxidase and glutathione reductase
renders cadmium-induced ROS atoxic. Cell exposure to
cadmium induces the genes for γ-glutamino-cysteine synthase
(γ-GCS), glutathione-S-transferases (GST-α and GST-π) as
well as increased glutathione production, which all quickly and
effectively eliminate Cd2+ toxicity [89,90]. Frequent exposure
to cadmium, however, may overcome the beneficial effects of



Fig. 2. Molecular carcinogenic effects of cadmium. Immediate biochemical effects of cadmium involve inhibition of DNA methylation, activation of cell signaling,
E-cadherin dysfunction, alteration of gene expression and participation in themalignant transformation processes, such as gene deregulation, activation and transcription
of immediate response genes (IERGs), as well as substitution of Zn by Cd2+ in the transcription factor proteins. Cadmium may also contribute to apoptosis, thus
diminishing the number of cells committed to neoplastic transformation; this, however, may give rise to a cadmium-adapted cell fraction in order to escape death.
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glutathione and related defense mechanisms and cause toxicity
and carcinogenicity [91]. In general, the expression of anti-
oxidant genes such as those that code for superoxide dismutase
and catalase, is suppressed by cadmium [92–94].

Suggested genotoxicity mechanism
Cadmium activates the expression of many proto-oncogenes,

including c-fos, c-jun and c-myc as well as the tumor suppressor
gene, p53 [95–101]. Today, it is believed that the mechanism of
cadmium action is indirect, possibly acting through metallo-
proteins [102], or through the substitution of Zn2+ by cadmium
in transcription factor proteins. Another suggested mechanism
is the induction of proto-oncogenes through the mobilization of
intracellular calcium [103,104]. In human cancer cells, gene
shifting is observed. The shifting mechanism remains unknown.
It is supposed that the shifting creates a transformed phenotype
through the expression of the corresponding gene. Both c-myc
and c-jun RNA are cell nucleus transcription factors necessary
for cell transition from the rest stage (G0) to the proliferation
state (G1), and consequently, their overexpression alters the cell
cycle.
Mechanisms which alter gene expression
Many mechanisms that involve secondary messengers such

as the ROS and the intracellular Ca2+ are considered to be
responsible for cadmium-induced deregulation of gene expres-
sion. Cadmium exposure results in increased intracellular Ca2+

levels [104,105]. Ca2+ directly deregulates gene expression by
reacting with specific response elements such as the CREB
factor (c-AMP-response element binding protein) found in the
promoter region of these genes [106]. Alternatively, cadmium
effects can be mediated indirectly through the activation of
protein kinases which cause overexpression by phosphoryla-
tion of the various transcription factors [107]. In addition,
cadmium activates calmodulin-dependent target genes by its
ability to mimic calcium ions [108]. The kinases that are
activated during the cell's exposure to cadmium include:
protein kinase C [109–111], stress-activated protein kinase
[112], tyrosine kinase, casein kinase-II [113] and three more
kinase types that are activated by the mitogens of the mPK
family, such as the protein kinase that is activated by
extracellular ERK signals, JNK and p38 MAP kinase
[114,115].
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Disruption of E-cadherin-mediated cell adhesion
According to Pearson and Prozialesk [116], cadmium

carcinogenesis involves E-cadherin, a molecule that regulates
cellular permeability and polarity [117]. E-cadherin is a Ca2+-
associated transmembranic glycoprotein which participates in
calcium-dependent cell-to-cell adhesion. The intracellular part
of the E-cadherin molecule is bound to the actin of the cell
skeleton through molecules called catenins. The extracellular
part of E-cadherin has Ca2+ binding sites as well as an area
through which the molecule adheres to the adjacent cell. Cd2+

linking to E-cadherin reduces the flexibility of the protein
molecule and limits the space available for uniform cell-to-cell
adhesion [118]. The disassociation of cell adhesion through
E-cadherin signals the activation of genes through β-catenin,
which functions at the early stages of tumor initiation. β-catenin
modifies the expression of many genes, including c-myc and
c-jun.

Cadmium and apoptosis
Studies have shown that the exposure of primary lung

epithelial cells to cadmium induces the anti-apoptotic protein
Bax [119], suggesting that cadmium is capable of triggering
apoptosis via a mitochondrial-dependent pathway.

Suppression of DNA repair by cadmium
The inhibition of DNA repair has been suggested as a

mechanism that contributes to cadmium genotoxicity [120].
Low cadmium concentrations suppress base excision DNA
repair [121] and the binding of the repair proteins to the DNA,
while this suppression is reversed by addition of Zn. Cadmium
reduces the cell's ability to repair the mis-pairing dGTP
oxidation yields of 8-oxo-dGTP which are mistakenly incorpo-
rated into the DNA and cause AT → CG transitions. The cells
are protected from 8-oxo-dGTP by 8-oxo-dGTPases. The
8-oxo-dGTPases are inhibited by cadmium, thus providing an
additional mechanism which contributes to the mutagenic and
carcinogenic potential of this metal [122].

ROS and cellular antioxidant system
The carcinogenic action of cadmium is related to the

production of the ROS. Cadmium produces hydroxyl radicals
[123], superoxide radicals, nitric oxide and hydrogen peroxide
[124,125]. It reduces intracellular glutathione and significantly
inhibits the activities of superoxide dismutase, glutathione
peroxidase and catalase [126].

Toxicity of Nickel

The amount of nickel that the tobacco plant absorbs form the
ground is quite significant. As a result, tobacco leaves contain
large amounts of nickel [127], with 0.64 and 1.15 μg/g per dry
leaf. During smoking, tobacco smoke contains approximately
75 ng per cigarette [127]. Other studies have shown a higher Ni
content in inhaled smoke. Epidemiological studies, as well as
experiments in rats, have shown that the exposure of humans
and laboratory animals to an environment with nickel-contain-
ing particles results in lung damage [128–130]. Following
inhalation of these particles, the accumulation of neutrophilic
granulocytes increased protein concentration [131], as well as
prostaglandin and cytokine production. The response to these
processes is the development of oxidative stress [132,133].
Nickel (as well as other metals), catalyzes the formation of the
ROS that cause lipid peroxidation. Carbonyl compounds, one of
the lipid peroxidation byproducts, are produced from the lipids
[134] and proteins [135] of the cell membrane. Some carbonyl
compounds such as acetaldehyde (CH3CHO), participate as
mediators to biological response (which is the prostaglandin
synthesis from the airway epithelial cells) [136]. It has been
shown that histones in the cell nucleus are targets for Ni(II) ions.
Nickel (II) binds histones, inducing sequence-specific histone
hydrolysis and the resultant complex mediates oxidative
damage to the nuclear DNA [137].

Pre-neoplasia: a question of the first magnitude

The results of several studies have shown that cigarette
smoking is associated with the development of pre-neoplastic
changes in the human lung [138] and lung cancer [139].
However, only a small number of the pre-neoplastic lesions
progresses to invasive cancer whereas the majority may remain
stationary or even regress [140]. Little is known about the
biological and molecular genetic events responsible for these
pre-neoplasias [141]. There is increasing evidence that the
progressive accumulation of multiple genetic changes underlies
the multi-step nature of tumorigenesis [140]. Wistuba et al
[142] suggest that “the development of epithelial cancers
requires multiple mutations and stepwise accumulation, which
may represent a mutator phenotype”. Thus, it is possible that
those pre-neoplastic lesions that have accumulated multiple
mutations are at higher risk for progression to invasive cancer
[142]. In addition, the same authors have detected allele-specific
mutations in smoking-related damaged epithelium; the mechan-
ism by which this phenomenon occurs is unknown.

Pre-neoplasia can be identified in the bronchial epithelium
which appears to be morphologically normal in smokers
[143,144]. This phenomenon is possibly due to the increased
survival of the epithelial cells because of increased resistance to
apoptosis [145,146]. Such genetic changes are not found in the
bronchial epithelium of lifetime non-smokers [144]. These
premalignant alterations are often extensive and focalized and
they occur throughout the whole extent of the respiratory tract.
This is of extreme importance since it appears to be related to
the development mechanisms of lung cancer in smokers; this is
referred to as field cancerization [147]. Berenblum referred to
“two sequential stages of carcinogenesis: the initiation stage,
which is completed within a short time, and the promoter action
stage which develops slowly, requiring protracted contact with
the carcinogen” [148]. While the “two sequential stages of
carcinogenesis” is a hypothesis, we could assume that a
protracted contact can be assured only when there is, for
example, a steady source of ROS production (i.e. metals such as
cadmium, chromium, nickel in a certain area of the lung tissue).
Some authors estimate that “although the dose of each
carcinogen per cigarette is quite small, the cumulative dose in
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a lifetime of smoking is substantial” [139]. It appears that a
cumulative dose can be also assured only when there is a steady
source of carcinogens in some areas of the lung and when other
quantities of carcinogenic compounds such as metals, together
create the critical mass which in turn is capable of triggering the
carcinogenic process.

The rationale behind the creation of the critical mass

The rationale behind the creation of the critical mass of
carcinogenic compounds which is necessary for the carcino-
genic process to proceed, has become apparent in numerous
pioneer studies over the last fifty years. The aim of these studies
was to identify the carcinogenic properties of certain compo-
nents of tobacco smoke, such as the PAHs, especially benzo[a]
pyrene, as well as some other compounds in the solid and
gaseous phases of tobacco smoke.

The mechanisms by which lung carcinogenesis was
extensively studied in the past were based on in vivo
experiments, such as intratracheal instillation or implantation
after thoracotomy of the carcinogenic material [149–156], or on
in vitro experiments based on cultured bronchoepithelial cells
exposed to carcinogens present in mainstream tobacco smoke
(performed through a puffing mechanism to generate tobacco
smoke-bubbled phosphate buffered saline extracts or conden-
sates) [157–166]. These exposure methodologies which were
applied in order to bring the bronchoepithelial cells in contact
with the carcinogenic material, gave rise to conditions which
were not relevant to exposure in humans. However, it is worth
noting that the comparison between laboratory processes used
to expose cells to the carcinogenic material of cigarette smoke
and normal smoking conditions, is of paramount importance. In
the laboratory process, there is the application of a large
quantity of carcinogenic substances (metals, PAHs) in a certain
area of the lung tissue of laboratory animals, and the addition of
a large quantity of suspensions of tar particles and tobacco
smoke condensate in cell cultures or in test tubes. This creates a
direct, local, appropriate critical mass of carcinogenic sub-
stances, so that, on the one hand, the defense mechanisms of the
cells are depleted in a short time period and on the other hand,
the repair mechanisms of cell DNA cannot respond to the
increased demands which have been created. Such cumulative
conditions with large quantities of carcinogenic substances in a
part of the lung tissue could occur only with exceptional
difficulty during normal smoking. It is, however, possible to
amass a great quantity of carcinogenic material in the
respiratory tract when special conditions of stagnation of the
mucous are created, due to destruction of the pulmonary defense
mechanisms by the gaseous phase of cigarette smoke and the
concentration of carcinogenic substances in the mucous due to
continued smoking. The opinion that it is extremely important
that there should be a concentration of a specific quantity of
carcinogenic substances (critical mass) in a certain area of the
lung in order to create appropriate circumstances for the
development of cancer, indirectly, but clearly supports the
excellent in vitro study of Yoshie and Oshima [164]. These
researchers demonstrated that low concentrations of Cu2+ or
Fe2+ do not result in the breakage of DNA by the components of
the tar, whereas high concentrations do. When there is no tar or
tobacco smoke condensate, high concentrations of metals only
do not produce breakage of the DNA strand [164]. Metals are
insufficient in order to begin the process of mutation followed
by carcinogenesis, but the presence of tar is necessary.

Speculation and future directions

The following questions remain to be answered: Why do
some premalignant lesions progress to invasive cancer, while
others remain unchanged for a long period of time? What are the
additional genetic changes required for the development of an
invasive cancer? In addition, i) why does only a very small
percentage (<20%) of heavy smokers get lung cancer, while
their lungs in all cases show pre-neoplastic alterations in the
DNA? ii) why do so many years (20–40) have to go by before
cancer develops in smokers? [167], and iii) how do the same
alterations exist in the healthy cell area of the lungs of a cancer
patient as well as in a heavy smoker who, however, does not
have cancer?

Along with the knowledge that metals may cause lung cancer
when inhaled in cigarette smoke, we have come to understand
that the answers to the above questions can be based on some
logical assumptions. One serious assumption would perhaps be
the fact that the necessary critical mass of carcinogenic metals
does not develop in some area of the lungs of the smokers by
chance. Additionally, as it is often reported in the literature, it is
highly possible that both the defensive mechanisms of the cells
and the rate of repairing the DNA damage are more active
whereas in heavy smokers who get lung cancer, the repair
systems are not efficient enough. But even then, why does
cancer only develop at one site of the lung tissue, when most of
the lung epithelial cells have already undergone mutational
changes which are widespread in all regions of the bronchial
epithelium of heavy smokers?

Progress in this area could be made if we could follow step-
by-step development of all pre-neoplastic mutations of the DNA
for 10–20 years in order to measure the number of mutations
over a long time period. It is already known that in each cell, and
everyday, a steady state of human DNA lesions occurs, by
internal oxidation (ROS) in the cell (130.000 bases in nuclear
DNA and 8.000 in mitochondrial DNA) which are continuously
repaired [168–174]. Knowing this, one would expect to see
perhaps a yearly evolving number of mutations of multiple sizes
which peak at the final aim, which is cancer. Today, it is
believed that mutational alterations in smokers do not remain
steady, but increase progressively with time [139]. Both the
duration and the extent of the increase in mutations have,
however yet to be understood.

We assume that the inhaled metals are not biodegradable and
for this reason they are deposited in different areas of the lung
interstitium, fatty tissue and lung epithelial cells and they stay
there. For example, cadmium, which is thought to be one of the
most genotoxic metals in cigarette smoke [42,175–180], is
deposited in the lung tissue where it remains for a long time (a
half life cycle of 10 years) [181,182]. The level of cadmium in
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the lung fatty tissue of smokers is four times higher than that in
non-smokers (10 μg/g). Cadmium was also increased up to
3.0 μg/g in the dry lung tissue of smokers, versus 1.1 μg/g in
non-smokers. Also, the corresponding values for chromium
were 4.3 μg/g dry wt lung tissue for smokers, versus 0.4 μg/g
dry wt lung tissue of non-smokers [181]. Furthermore, the
insoluble particles of nickel provide a continuous source of Ni
(II) ions, which induce cancer, in a process that takes many
years [182–184]. We suggest that cancer still occurs when, in a
certain part of the lung, there is accidental (random) concentra-
tion of critical quantities of carcinogenic substances, especially
metals [140]. The creation of a critical mass of metals in some
area of the lung tissue will have, as a result, the production of
strong oxidants through metal catalysis [182,185] and the
surrounding biomolecules will be attacked [186–188].

It appears that the interspersing of carcinogenic substances in
the lung tissue happens by chance and the future (by chance)
accumulation of these substances in a certain part of the lung
tissue could create damage to genomic DNAwhich the cells will
no longer be able to repair.

Summary and conclusion

The normal bronchial epithelium that lines the airways of the
lungs provides a barrier to the external environment by using
the pulmonary clearance system which involves the cilia of the
bronchoepithelial cells and the mucous blanket which covers
the cilia. Normally, the tar particles in tobacco smoke are
deposited on the mucociliary escalator and are continually
expelled outwards by the movement of the cilia. The cytotoxic
potential of the gaseous phase of tobacco smoke paralyses this
function and finally destroys the structure of the cilia. During
the initial stages, the lung epithelial cells are exposed to low
concentrations of carcinogens (metals) which are dispersed in a
myriad of small particles throughout the lung tissue and
deposited in the lung interstitium and fatty tissue. The lung
epithelial cells are then exposed to low concentrations of
carcinogens (metals). The intracellular redox status of the
epithelial cells can regulate their antioxidants by shifting the
oxidation to a reducing condition [189]. Also, the expression of
a great number of DNA repair enzymes is upregulated [190].
Oxidized bases are continually repaired by single nucleotide
repair mechanisms (90%) and by long-patch base excision
repair (10%).

In the long term, when the cilia are destroyed by the gaseous
phase of cigarette smoke, the mucous becomes stagnant in the
interior of the bronchial tree, enriched by the tar particles (as
long as the smoker continues to smoke), causing the obstruction
of the small airways. Then, an appropriate critical mass of
carcinogenic material (metals) is created by chance in a certain
area of the lung tissue. The metal-induced catalysis of the
formation of strong oxidants at this site of the tissue exceeds the
protective (antioxidative) and DNA-repairing capacities of the
cells; this ensures the progressive accumulation of multiple
genetic changes which underline the multi-step nature of
carcinogenesis and facilitate an appropriate environment for
causing cancer.
In conclusion, carcinogenesis in the lungs of heavy smokers
is mainly due to the oxidative process caused by metals. The tar
particles of CS play a critical role in this process. Further studies
are required in order to investigate 1) the course of pre-neoplastic
lesions progressing to invasive cancer and 2) the biological and
molecular genetic events responsible for these pre-neoplasias.
Progress in this area could be made if we could follow the step-
by-step development of mutations in the nuclear and mitochon-
drial DNA over a long period of time focusing on the mecha-
nisms related to resistance to apoptosis and on the increased
survival of a small population (15–25%) of genetically damaged
cells which manage to avert apoptosis.
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