The Control of Behavior: Neural Mechanisms
Neural systems of reflexive behaviors

Konrad Lorenz: The **Fixed Action Pattern** (FAP)
- Graylag goose & egg rolling
- Herring gull & feeding

FAPs appear to be completely innate:
- Reproductive behaviors
 - Pheromone guided flight
 - Courtship dances/rituals
 - Copulation
- Escape responses
- Sensory and Motor Reflexes

Advantage:
- Does not have to be learned.
- Does not change (works the first time every time)

Disadvantage: Mimicry & Parasitism
- Cuckoo, a nest parasite
- Rover beetle nest parasite
- Orchid female insect “decoys” attract unsuspecting males
- Predatory firefly females “mimic” the call of other species females and lure males to “dinner”
4.5 Effectiveness of different visual stimuli in triggering the begging behavior of herring gull chicks.
4.6 Instinct theory

Releaser

Innate releasing mechanism
Moths and Bats

Classic example of neural control of behavior

Fact – Bats eat bugs in flight

Selection should favor anti-bat behavior in a night flying insect.

How do moths avoid bats?
Bat Feeding

Bats use sonar to detect prey
High frequency ultrasonic pulses
Bat feeding buzzes announce their presence to those that can detect high frequency sounds.
Moth Hearing

Moths have “ears” on the sides of the thorax

These structures are sensitive to high frequency sounds and deaf to others.
4.11 Noctuid moth ears

(A)
- Brain
- Thoracic ganglia
- Ear with auditory receptors

(B)
- Tympanum
- Air sacs
- A1 Receptor cells
- A2
Basic Neurophysiology

Neuron – nerve cell

Sensory neuron – carry information from sensory organ to the central nervous system (CNS)

CNS – brain and spinal cord
 Most complex processing of information is done here

Motor neuron – carry information from CNS to muscle groups
Action Potential

Figure 11.15
Route of Transmission

Ear ➔ Sensory neuron ➔ Interneuron ➔ Ganglion ➔ Motor neuron ➔ Muscles

10 Neural network of a moth. Receptors in the ear relay information to interneurons in the thoracic ganglion, which communicate with motor neurons that control the wing muscles.
4.13 Neural network of a moth
Properties of the ultrasound-detecting auditory receptors of a noctuid moth (Part 1)

(A) Neural activity

- Low-intensity stimulus: Sound
- Moderate-intensity stimulus: Sound
- High-intensity stimulus: Sound

A1 receptor

A2 receptor
4.14 Properties of the ultrasound-detecting auditory receptors of a noctuid moth (Part 2)
What Does This Mean?

A1 receptor – fires rapidly but slows after a bit of a constant buzz (phasic)
A2 receptor – fires only on high intensity calls (bat near)
A1 sensitive to both low and high intensity bat feeding buzzes.
Rate of A1 “firing” as buzz intensity ↑
A1 responses to pulsed sound
Responds to 20-50 kHz sound
A2 responds only to high intensity sound
Summary

A1 is main bat detector
 Can detect a bat at 30 m.
 As A1 rate of fire increases, moth should turn away from bat to reduce sonar echo.

A2 is emergency system.
 Initiates erratic flight and last ditch effort to evade capture
Orientation

Moth ears can tell location of bat by differences in signal received on left and right side of the body.

When the signal is even on both sides – bat is parallel.

If bat is above, detect during the up wing beats with a high firing rate.
4.15 How moths might locate bats in space (Part 1)
How moths might locate bats in space (Part 2)

(B)

A1 cell activity
Pulses of sound
A1 cell activity
4.15 How moths might locate bats in space (Part 3)

(C)

Wings up

Wings down

A1 cell activity

Sound stimulus
How Do They Hear?

Moth Larvae have sensory hairs that vibrate at a certain range of frequency. If it touches the side, will fire.

Most sensitive to 100-600 Hz (wing beat frequency of a parasitic wasp. If you hear this, JUMP!!!
Stimulus Filtering

Respond selectively to important stimuli
Determined by natural selection
Ex. From bat-moth interaction
Moth – A1 can habituate to a long pulse
A1 responds to 20-50 kHz and filters the rest.
Real World Examples of Stimulus Filtering

Sleep
- We filter out unnecessary sounds

In the woods
- Hear other voices easier than the background noise.

We can only hear within a certain sound range

Possess a fixed visual range as well.
Two Aspects of Stimulus Filtering

Specialized detection system
 Ex. Moth

Post-detection filtering of stimuli by CNS.
 Ex. Not hearing the train at night, but hearing the front door open.
Sound Perception in Bats

Specialized echolocation system
Discriminate your own echos from other echos.
Fact – echos return at a reduced intensity.
Echo detectors respond to low intensity ultrasound immediately AFTER a feeding buzzing, and at no other time
More Neurons

Tracking neurons
Will keep firing as long as interval between buzz and echo decreases.

Ranging neurons
Respond to specific echo delays
Short delay neurons and long delay neurons

close to object far from object
Selective Tactile Detection

Insectivores tend to dedicate different amounts of brain function to particular senses.

23 The star-nosed mole's nose (top left) differs greatly from that of the eastern mole (top right), let alone those of its more distant relatives, which include the African hedgehog (bottom left) and the masked shrew (bottom right). All four species, however, rely on tactile information to a considerable degree in locating prey, which range from insects to earthworms. Photographs by Ken Catania.
Sensory analysis in four insectivores

(A) Anatomical proportions

Cortical magnification

(B) Anatomical proportions

Cortical magnification

(C) Anatomical proportions

Cortical magnification

(D) Anatomical proportions

Cortical magnification
A special tactile apparatus (Part 1)
4.31 Sensory analysis in humans and naked mole-rats
Selective Visual Perception

Example of toads
Has two eyes, but may not be seeing anything?!?!?!?

Light sensory neurons in retina get struck with photons, the neurons pass down the optic nerve, cross brain hemispheres to the optic tectum and thalamus.

Why aren’t they seeing?
I’m BLIND…too the obvious

Eyes do not respond (neurons fire) without movement.
The eye gets habituated to image.
So, when toads are sitting still and nothings happening, they don’t “see” a thing!
An example of stimulus filtering by ganglion cells.
Ganglion Cells

Receive input from several receptors/sensory neurons.

Under certain conditions, ganglion cells will pass information onto the CNS.

A ganglion cell is attached to photoreceptors in the retina that define a receptive field.
Receptive Fields – 2 Types

Excitatory field
 Increases chances of ganglion firing.

Inhibitive field
 Reduces ganglion chances of firing.
This is a design for a small object detector. Large objects will not make this ganglion fire, too inhibitory.
Worm Detectors in Toads

Need a long, thin detector

Also have a vertical worm detector

All fields are processed together into a single image. Still don’t know how this exactly works.
Optic Illusions

Brain fills in gaps it thinks is missing
Another Brain Trick

Can you read this?

I cdnuolt blveiee taht I cluod aulaclty uesdnatnrд waht I was rdanieg The phaonmneal pweor of the hmuan mnid Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mtttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht the frist and lsat ltteer be in the rghit pclae. The rset can be a taotl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. Amzanig huh? yaeh and I awlyas thought slpeling was ipmorantt.
Electric Field Perception

Many fish are capable of this
Possess a lateral line
Electric eel can create charge between head and tail.

Uses charge to sense within its field
 If non-living or poor conductor gets in field, it spreads the lines of magnetism.
 If living or good conductor enters, lines narrow.
Charged up eels

The self-generated electric field surrounding an electric fish with an electric organ in its tail. Objects near the animal distort the field, and these changes are detected by electroreceptors in the fish’s skin. Receptor activity is normal at A, elevated at B, and depressed at C.
Central Pattern Generators

Functional clusters of cells in the CNS
 Generate a pattern of neural signals
 needed to produce a specific sequence
 of responses.

No sensory feedback is required for
 operation
 Sensory feedback can modify the central
 pattern generator
Examples

Sea Slug
Will fire dorsal then ventral over and over again with no other input than the need to swim.

Grasshopper flight
Can trick it into thinking its flying by blowing on its face
Pattern in elevator/depressor firing pattern

Midshipman fish
“Drumming” of swim bladder by sonic muscles creates mating song. Read Bass 1996 for more.
Vertebrate Examples

Birds
- Flight can be run on a CPG
- Can cut spinal cord and a bird can continue in a straight line.

Humans
- Breathing is a CPG
4.32 Ultraviolet-reflecting patterns have great biological significance for some species.
4.33 A bird that can sense ultraviolet light
4.40 The ability to navigate unfamiliar terrain requires a compass sense and map sense (Part 1)
4.40 The ability to navigate unfamiliar terrain requires a compass sense and map sense (Part 2)
4.45 Migratory routes taken by five green sea turtles that nested on Ascension Island
Experimental manipulation of the magnetic field affects the orientation of green sea turtles.
• Fact – All animals have many behaviors that they could perform at a given time.

• Question: How do you avoid maladaptive behavioral conflicts in which two or more things are done at once?
5.1 Different courtship displays of the male ring dove are under the control of different hormones.
Chapter 5 Opener: Male red-sided garter snakes emerging from hibernation are ready to mate
• Nervous system organized in a hierarchy of command centers.
• These command centers are in neural contact.
 – One command center can inhibit another
 – Ex. Praying mantis
• Can surgically isolate ganglia from CNS.
 – Behaviors soon become out of sync
 – Suggests that ganglia are command centers
 and that they are controlled by other parts of
 the CNS.
• What happens if you sever the
 protocerebral ganglion (PCG) or brain?
 – Mantis attempts to do many things at once
 – Suggests that PCG inhibits many command
 centers.
• What happens if you cut its head off (remove the subesophageal ganglion or SEG)?
 – Mantis become mobile
 – SEG controls other motor command centers
 – In absence of SEG, other command centers are not stimulated

• Thus, even beheaded, ♀ praying mantis can continue mating.
• It is possible to replace the PCG and SEG with microcircuitry.
• Can make them walk left, right, turn, forward, etc.
• Feeding command center is inhibited by stretch receptors in the foregut.

• If the recurrent nerve is cut, feeding continues in 90 second intervals until gut ruptures.
• 24 hour cycles of behavior change
 – Period of activity and inactivity (often sleep).
• Two hypotheses for controlling circadian rhythms
• Run by an internal clock
• Response to external environmental changes
 – Ex. Crickets calling/moving after dark.
A master clock may regulate mechanisms controlling circadian rhythms within individuals.
• Have 25 hour cycle
 – Period of activity changes over time
• If you pluck the feathers from the head of a blind bird– activity period is entrained with light cycle
• If scalp is inked, 25 hour cycle fails
• If you remove the ink, 25 hour cycle is set by light cycle.
What does this mean?

- Free-running circadian cycle is timed internally
 - 25 hour cycle in house sparrow
- Cycle can be **entrained** to the day/light cycle by light itself.
- Entrainment pathway clock mechanism observed rhythms
What is the Clock?

- **SCN** – suprachiasmatic nucleus
 - This contains the timing mechanism
- If you oblate this region (electrically fry it), the brain loses its rhythm.
- Entrainment pathways differ across animals.
- **Mammals** – phototransduction (light to brain) thru vision. Eyes – SCN
 - A neural pathway
- **Birds and Reptiles** – pineal gland detects light directly
 - A photo sensitive part of the brain that releases a hormonal signal to the SCN.
Pineal Transplant Experiment

- Set 2 birds to have pineal glands to inverted light cycles.
 - A. L/D B. D/L
- Put the glands in other birds with removed pineal glands
 - Now have cycle of A or B donor, respectively.
• SCN is the pacemaker of the clock.
 – A structure in hypothalamus
• Eyes neurons SCN (entrainment pathway)
• SCN is linked via neurons to the pineal gland.
• Pineal gland secretes rhythmic pulses of melatonin.
 – This is the messenger to the rest of the body.
Recent Results

- Humans – Extraocular phototransduction of circadian rhythms
- Evidence – can entrain a photoperiod with a light against the back of the knee???
Recent Results

- Independent clocks throughout the body. These clocks can be set on different cycles.
- In humans: overall activity entrains to photoperiod
 - Can entrain clock of stomach on a non 24 hour cycle
 - Another study on fruit flies
 - showed multiple biological
 - clocks as well.
• Lunar cycle – 28 to 29 day cycle
• Many nocturnal rodents follow this
• Clear avoidance of moonlight
• Activity period reflects this fact
• Is this run by a clock?
• Lets look at *Dipodomys spectabilis* – banner–tailed K-rat
• Seem to anticipate moonrise
• Can’t locate or identify this clock yet.
The Reproductive Cycle of *Mus musculus*

- Copulation
- Followed by male aggression and infanticide
- Kill all young mice in home range (2-3 weeks)
- Gradual shift to parental mode when own offspring born
- Weening of young promotes copulation again.
• We know it’s a clock because we can mess with it.
• A timer (somewhere) counts 50 photoperiods after copulation in σ.
• If you speed up day (24 to 19 hour light cycle)
• You can speed up the cycle to 50 short photoperiods.
Circannual Cycles

• Yearly cycles of behavior
• Ultimate selection pressure is winter
 – Summer is transition
• Tropics: annual precipitation cycle. Dry Wet.
• Circannual rhythms are timed by a biological clock of some sort.
 – Pineal? SCN? Not well understood.
5.14 Circannual rhythm of the golden-mantled ground squirrel
• Food
• Little food – some animals will not breed
 – Ex. Pinyon jays – only breed if they see green pine cones in spring
• Circannual cycle of WCSP
• Spring→Summer→Fall→Winter
 • Gonadal Breeding Migration Non-reproductive
• growth behavior
Social Influences on Circannual Timing

• Breeding activities re-enforces start of breeding activity
• Ex. Elk (red deer)
• Early spring – play roaring calls of males on tape.
• Females will start ovulating
• Suggests a variable reproductive environment