
MSI ADDERS and SUBTRACTORS

MSI ADDERS

There are commercially available 1-bit, 2-bit, and 4-bit full adders, each in one package. In
the figure 1, it is indicated the logic topology for 2-bit addition.

Fig. 1: Logic diagram of an integrated 2-bit full adder

The inputs to the first stage are A0 and B0; the input marked C-1 is grounded. The
output is the sum S0. The carry C0 is connected internally and is not brought to an output
pin. This 20 stage (LSB) is identical with that in the figure 2, with n = 0. The abbreviation
LSB means least significant bit.

© Sajjad Waheed, 2004 1

A
0
B

0
C

-1
A

1
B

1
C´

0

S
1

C
1

S
0

C´
o

Fig. 2: Block diagram implementation of the n-th stage of a full adder

Since the carry from the first stage is C′0, it should be negated before it is fed to the
21 stage. However, the delay introduced by this inversion is undesirable, because the
limitation upon the maximum speed of operation is the propagation delay of the carry
through all the bits in the adder.

The NOT-gate delay is eliminated completely in the carry by connecting C′0 directly to
the following stage and by complementing the inputs A1 and B1 before feeding these to this
stage. This latter method is used in the figure 1.

Note that now the outputs S1 and C1 are obtained directly without requiring inverters.
The logic followed by this second stage for the carry is given by an equation from the full
adder

Cn = B′n C′n-1 + A′n C′n-1 + A′n B′n ,

and for the sum by the modified form of the equation
Sn = Αn C′n + Bn C′n + Cn-1 C′n + An Bn Cn-1,

where each symbol is replaced by its complement.

© Sajjad Waheed, 2004 2

A
n

B
n

C
n-1

S´
n

C´
n

S
n

In a 4-bit adder C1 is not brought out but is internally connected to the third stage,
which is identical with the first stage. Similarly, the fourth and second stages have identical
logic topologies.

A 4-bit adder requires a 16-pin package: 8 inputs, 4 sum outputs, a carry output, a
carry input, the power-supply input, and ground. The carry input is needed only if two
arithmetic units are cascaded; for example, cascading a 2-bit with a 4-bit adder gives the
sum of two 6-bit numbers.

If the 2-bit unit is used for the 24 and 25 digits, then 4 must be added to all the
subscripts in the figure 1. For example, C-1 is now called C3 and is obtained from the output
carry of the 4-bit adder.

The MSI chip (TI 74LS83, a specific IC from Texas Instruments) for a 4-bit binary
full adder contains somewhat over 200 components (resistors, diodes, or transistors). For
high-speed, low-power operation, Schottley transistors and diodes are used in each AOI
block, and each gate output contains a Darlington pair.

The propagation delay time of the carry is typically 50 ns, and the power dissipation
is 75 mW.

SERIAL OPERATION

In a serial adder the inputs A and B are synchronous pulse trains on two lines in the
computer. We have four different figures in the following to show these operations. If you
minutely look at those figures, you can find some similarities between the binary operations
and the binary bit strings.

Figure 3(a) and 3(b) show typical pulse trains representing, respectively, the decimal
numbers 13 and 11. Pulse trains representing the sum (24) and difference (2) are shown in
the figure 3(c) and 3(d), respectively.

Let us take two arbitrary numbers: 13 and 11 as the inputs B and A, respectively. The
binary form of these are 011012 and 010112. If we add these two binary numbers, we shall
find the following result:

0 1 1 0 1 ⇒13
0 1 0 1 1 ⇒11

1 1 0 0 0 ⇒24

The following figure shows the binary number representation for 13 in the figure
3(a) and then 11 in the figure 3(b). The figure 3(c) shows the sum of these two numbers.

© Sajjad Waheed, 2004 3

Fig. 3(a): Pulse waveforms representing number 13 ⇒ 01101, with 20 as LSB

Fig. 3(b): Pulse waveforms representing number 11 ⇒ 01011, with 20 as LSB

Fig. 3(c): Pulse waveforms representing sum of 13 and 11; 24 ⇒ 11000

Now if we take difference of these two numbers, we may have:

0 1 1 0 1 ⇒13
0 1 0 1 1 ⇒11

0 0 0 1 0 ⇒2

The following figure represents the difference or the subtraction result as derived
above.

Fig. 3(d): Pulse waveforms representing subtraction of 13 and 11; 2 ⇒ 00010

A serial adder is a device which will take as inputs the two wave forms of the figure
3(a) and 3(b); and deliver the output wave form in the figure 3(c). Similarly, a subtraction
will yield the output shown in the figure 3(d).

We have already emphasised that the sum of two multidigit numbers may be formed
by adding to the sum of the digits of like significance the carry (if any) which may have
resulted from the next lower place. With respect to the pulse trains of the figure 3, the above
statement is equivalent to saying that at any instant of time, we must add (in binary form) to
the pulses A and B the carry pulse (if any) which comes from the resultant formed one
period T earlier.

© Sajjad Waheed, 2004 4

20 21 22 23 24

20 21 22 23 24

2 0 2 1 2 2 2 3 2 4

20 21 22 23 24

Fig. 4: A serial binary full adder

The logic outlined above is performed, by the full-adder circuit of the figure 4. This
circuit differs from the configuration in the parallel adder as shown in the following figure,
[that we had seen in previous chapter] by the inclusion of a time delay TD which is equal to
the time T between pulses. Hence the carry pulse is delayed a time T and added to the digit
pulses in A and B, exactly as it should be.

Fig. 5: A 4-bit parallel binary adder constructed from cascaded full adder

© Sajjad Waheed, 2004 5

Time Delay

A
n

B
n

C
n-1

Full Adder

C
n

S
n

FA3

S
3C

3

C
2

B
3

A
3

FA0

S
0C

0

C
-1

B
0

A
0

FA1

S
1C

1

C
0

B
1

A
1

FA2

S
2C

2

C
1

B
2

A
2

(20)(23) (22) (21)

A comparison of the figures 5 and 4 indicates that parallel addition is faster than
serial because all digits are added simultaneously in the former, but in sequence in the latter.
However, whereas only one full adder is needed for serial arithmetic, we must use a full
adder for each bit in parallel addition. Hence parallel addition is much more expensive than
serial operation.

The time delay unit time delay [TD] is a type D FLIP-FLOP, and the serial numbers An,
Bn, and Sn are stored in shift registers.

SUBTRACTORS

The subtraction of two binary numbers may be accomplished by taking the complement of
the subtrahend and adding it to the minuend. By this method, the subtraction operation
becomes an addition operation requiring full adders for its machine implementation.

It is possible to implement subtraction with logic circuits in a direct manner, as done
with paper and pencil. By this method, each subtrahend bit of the number is subtracted from
its corresponding significant minuend bit to form a difference bit. If the minuend bit is
smaller than the subtrahend bit, a 1 is borrowed from the next significant position.

The fact that a 1 has been borrowed must be conveyed to the next higher pair of bits
by means of a binary signal coming out (output) of a given stage and going into (input) the
next higher stage. Just as there are half- and full-adders, there are half- and full-subtractors.

HALF SUBTRACTOR

A half-subtractor is a combinational circuit that subtracts two bits and produces their
difference. It also has an output to specify if a 1 has been borrowed. Designate the minuend
bit by x and the subtrahend bit by y.

To perform x − y, we have to check the relative magnitudes of x and y. If x > y, we
have three possibilities: 0 − 0 = 0, 1 − 0 = 1, and 1 − 1= 0. The result is called the difference
bit.

If x < y, we have 0 − 1, and it is necessary to borrow a 1 from the next higher stage.
The 1 borrowed from the next higher stage adds 2 to the minuend bit, just as in the decimal
system a borrow adds 10 to a minuend digit. With the minuend equal to 2, the difference
becomes 2 - 1 = 1.

The half-subtractor needs two outputs. One output generates the difference and will
be designated by the symbol D. The second output, designated B for borrow, generates the

© Sajjad Waheed, 2004 6

binary signal that informs the next stage that a 1 has been borrowed. The truth table for the
input-output relationship of a half-subtractor can now be derived as follows:

x y B D
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

The output borrow B is a 0 as long as x > y. It is a 1 for x = 0 and y = 1. The D output
is the result of the arithmetic operation 2B + x − y.

The Boolean functions for the two outputs of the half-subtractor are derived directly
from the truth table:

D = x′y + xy'

B = x′y

It is interesting to note that the logic for D is exactly the same as the logic for output
S in the half-adder.

FULL SUBTRACTOR

A full-subtractor is a combinational circuit that performs a subtraction between two bits,
taking into account that a 1 may have been borrowed by a lower significant stage. This
circuit has three inputs and two outputs. The three inputs x, y, and z, denote the minuend,
subtrahend, and previous borrow, respectively. The two outputs, D and B, represent the
difference and output borrow, respectively. The truth table for the circuit is as follows:

x y z B D
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

The eight rows under the input variables designate all possible combinations of 1's

© Sajjad Waheed, 2004 7

and 0's that the binary variables may take. The 1's and 0's for the output variables to
determined from the subtraction of x − y − z.

The combinations having input borrow z = 0 reduce to the same four conditions of
the half-adder. For x = 0, borrow a 1 from the next stage, which makes B = 1 and adds 2 to
x. Since 2 − 0 − 1 = 1, D = 1.

For x = 0 and yz = 11, we need to borrow again, making B = 1 and x = 2. Since 2 − 1
− 1 = 0, D = 0. For x = 1 and yz = 01, we have x − y − z = 0, which makes B = 0 and D = 0.
Finally, for x = 1, y = 1, z = 1, we have to borrow 1, making B = 1 and x = 3, and 3 − 1 − 1
= 1, making D = 1.

The simplified Boolean functions for the two outputs of the full-subtractor derived in
the maps of the figure 6. The simplified sum of products output

D = x′y′z + xyz′ + xy′z′ + xyz

B = x′y + x′z +yz

Again we note that the logic function for output D in the full-subtractor is exactly
same as output S in the full-adder. Moreover, the output B resembles the on for C in the
full-adder, except that the input variable x is complemented.

Because of these similarities, it is possible to convert a full-adder into a full-
subtractor merely complementing input x prior to its application to the gates that form the
carry output.

D = x′y′z + xyz′ + xy′z′ + xyz

Fig. 6(a): Karnaugh Map for full-subtractor

© Sajjad Waheed, 2004 8

1 1

1 1

00 01 11 10

0

1

 yz

x

{ x

 z

y

B = x′y + x′z +yz

Fig. 6(b): Karnaugh Map for full-subtractor

© Sajjad Waheed, 2004 9

1 1 1

1

0 0 0 1 1 1 1 0

0

1

 y z

 x

{ x

z

y

