La elección para el Consejo de Administración de la Fundación Wikimedia ya ha comenzado. ¡Te agradecemos que pases a votar!
Agua
De Wikipedia, la enciclopedia libre
|
|||||
Nombre (IUPAC) sistemático | |||||
---|---|---|---|---|---|
Agua | |||||
General | |||||
Otros nombres | Óxido de hidrógeno Hidróxido de hidrógeno Hidrato Ácido hídrico Monóxido de dihidrógeno Óxido de dihidrógeno |
||||
Fórmula semidesarrollada | HOH | ||||
Fórmula molecular | H2O | ||||
Identificadores | |||||
Número CAS | 7732-18-5 | ||||
Número RTECS | ZC0110000 | ||||
Propiedades físicas | |||||
Estado de agregación | Líquido | ||||
Apariencia | incoloro | ||||
Densidad | 1,0 ×10³ kg/m3; 1 g/cm3 | ||||
Masa | 18,01528 u | ||||
Punto de fusión | 273,15 K (0 °C) | ||||
Punto de ebullición | 373,15 K (100 °C) | ||||
Temperatura crítica | 647,1 K (373,95 °C) | ||||
Estructura cristalina | Hexagonal (véase hielo) | ||||
Propiedades químicas | |||||
Acidez (pKa) | 15,74 | ||||
Solubilidad en agua | 100% | ||||
KPS | n/d | ||||
Momento dipolar | 1,85 D | ||||
Termoquímica | |||||
ΔfH0gas | -241,83 kJ/mol | ||||
ΔfH0líquido | -285,83 kJ/mol | ||||
S0gas, 1 bar | 188,84 J·mol-1·K-1 | ||||
S0líquido, 1 bar | 41 J·mol-1·K-1 | ||||
Peligrosidad | |||||
Número RTECS | ZC0110000 | ||||
Riesgos | |||||
Ingestión | Necesaria para la vida; su consumo excesivo puede producir dolores de cabeza, confusión y calambres. Puede ser fatal en atletas. | ||||
Inhalación | No es tóxica. Puede disolver el surfactante de los pulmones. La sofocación en el agua se denomina ahogo. | ||||
Piel | La inmersión prolongada puede causar descamación. | ||||
Ojos | No es peligrosa para los ojos, a no ser que tenga cloro, con el cual los ojos se irritan. | ||||
Valores en el SI y en condiciones normales (0 °C y 1 atm), salvo que se indique lo contrario. Exenciones y referencias |
- «H2O» redirige aquí. Para otras acepciones véase H2O (desambiguación).
Definición
El agua es un compuesto formado por dos átomos de hidrógeno (H) y uno de oxígeno (O). Proveniente del latín aqua.
Características básicas
A temperatura ambiente es líquida, inodora, insípida e incolora (aunque adquiere una leve tonalidad azul en grandes volúmenes). Se considera fundamental para la existencia de la vida. No se conoce ninguna forma de vida que tenga lugar en su ausencia completa.
Es el único compuesto que puede estar en los tres estados (sólido, líquido y gaseoso) a las temperaturas que se dan en la Tierra. Se halla en forma líquida en los mares, ríos, lagos y océanos; en forma sólida, nieve o hielo, en los casquetes polares, en las cumbres de las montañas y en los lugares de la Tierra donde la temperatura es inferior a cero grados Celsius; y en forma gaseosa se encuentra formando parte de la atmósfera terrestre como vapor de agua.
Es el compuesto con el calor latente de vaporización más alto, 540 cal/gramo y con el calor específico más alto después del litio, 1 cal/gramo.
Importancia y distribución
Es fundamental para todas las formas de vida conocida. Los humanos consumen agua potable. Los recursos naturales se han vuelto escasos con la creciente población mundial y su disposición en varias regiones habitadas es la preocupación de muchas organizaciones gubernamentales.
El agua cubre tres cuartas partes (71 por ciento) de la superficie de la Tierra, pese al área por la cual se extiende, la hidrósfera terrestre es comparativamente bastante escasa, para dar un ejemplo citado por Jacques Cousteau: si se sumergiera una bola de billar en agua y se la quitase la película de humedad que quedaría inmediatamente tras ser sacada, sería proporcionalmente mayor que la de todos los océanos. A pesar de que es una sustancia tan abundante, sólo supone el 0,022 por ciento de la masa de la Tierra. Se puede encontrar esta sustancia en prácticamente cualquier lugar de la biosfera y en los tres estados de agregación de la materia: sólido, líquido y gaseoso.
El 97 por ciento es agua salada, la cual se encuentra principalmente en los océanos y mares; sólo el 3 por ciento de su volumen es dulce. De esta última, un 1 por ciento está en estado líquido, componiendo los ríos y lagos. El 2 por ciento restante se encuentra en casquetes o banquisa en las latitudes próximas a los polos. Fuera de las regiones polares el agua dulce se encuentra principalmente en humedales y, subterráneamente, en acuíferos. Hacia 1970 se consideraba ya que la mitad del agua dulce del planeta Tierra estaba contaminada.
El agua representa entre el 50 y el 90 por ciento de la masa de los seres vivos (aproximadamente el 75 por ciento del cuerpo humano es agua; en el caso de las algas, el porcentaje ronda el 90 por ciento).
En la superficie de la Tierra hay unos 5.398.263.000 km³ de agua que se distribuyen de la siguiente forma:
- 1.320.000.000 km³ (97%) son agua de mar.
- 40.000.000 km³ (3%) son agua dulce.
- 25.000.000 km³ (1,8%) como hielo.
- 13.000.000 km³ (0,96%) como agua subterránea.
- 250.000 km³ (0,02%) en lagos y ríos.
- 13.000 km³ (0,001%) como vapor de agua.
A estas cantidades hay que sumarle la que forma parte de la composición del manto, la zona terrestre que representa un 84% del volumen planetario. Parte de esta agua alcanza la superficie tras separarse de las masas subterráneas de magma (agua juvenil) o en forma de vapor, junto a otros volátiles, durante las erupciones volcánicas. Este proceso, que llamamos desgasificación del manto, compensa permanentemente, y lo hará mientras no cese la dinámica interna planetaria, la pérdida de agua por fotólisis en la alta atmósfera; allí, los átomos de hidrógeno liberados tienen a perderse en el espacio. El día que el planeta no contenga ya calor suficiente para mantener la tectónica de placas y el vulcanismo, esa pérdida paulatina terminará por convertir su superficie en un desierto universal.
Origen del agua
¿De dónde proviene entonces el agua que disfrutamos en la Tierra? Los científicos piensan que los constituyentes químicos del agua (oxígeno e hidrógeno) deben haber existido en la nube primitiva que dio origen a nuestro Sistema Solar, hace alrededor de 4.500 millones de años.
El entonces joven Sistema Solar estaba lleno de escombros y, cuando muchos de estos trozos de material planetario chocaron contra nuestro planeta, pudieron iniciar un proceso en el cual el hidrógeno y el oxígeno congelados se vaporizaron, liberándose así en la atmósfera terrestre.
Una vez que ambos elementos estuvieron presentes en la Tierra, lo demás tuvo que ser simple. El hidrógeno es un elemento fácilmente inflamable y, cuando se quema en presencia del oxígeno, se une con este último elemento. Cuando el oxígeno y el hidrógeno se combinan en proporciones adecuadas (para ser exactos, un átomo de oxígeno por cada dos de hidrógeno) entonces lo que resulta es vapor de agua.
Actualmente existe cierta evidencia que respalda a esta teoría. Se sabe que las rocas del manto terrestre contienen agua en una buena proporción. En la superficie de nuestro planeta, las emisiones volcánicas contienen una gran cantidad de vapor de agua. Algunos científicos afirman que esta adición de agua a la atmósfera terrestre puede aún llegar a ser mayor, en la medida que los volcanes liberen más vapor de agua en el aire.
La teoría anterior es muy aceptada y ha sido ampliamente investigada. Pero existe otra, más reciente, que sugiere que una buena parte del agua terrestre pudo haber sido traída por los cometas que fueron capturados por la gravedad terrestre, y que terminaron por impactarse contra nuestro planeta.
Es un hecho comprobado que, durante toda su historia, el planeta en el cual vivimos ha sufrido colisiones de meteoritos en repetidas ocasiones. Los meteoritos, debido a la gran cantidad de energía de movimiento que poseen, se vaporizan completamente al impacto; de esta manera, pudieron inyectar hidrógeno y oxígeno a la atmósfera terrestre.
Según cálculos recientes, no serían necesarios muchos meteoritos para justificar la cantidad de agua que posee nuestro planeta.
Como ha ocurrido en muchas ocasiones a lo largo de la historia de la ciencia, el origen verdadero del agua en la Tierra probablemente tenga que ver con ambas ideas. Como los procesos ya referidos no se excluyen mutuamente, los dos pueden ser responsables del agua que existe actualmente en nuestro planeta.
La Tierra fue un lugar extremadamente caliente, de manera que su atmósfera pudo contener una cantidad mayor de vapor de agua. Pero eventualmente nuestro planeta se fue enfriando y el vapor comenzó a condensarse. Fue así como la Tierra experimentó la tormenta más intensa de su historia. Desde entonces, el agua que posee nuestro planeta ha sido la misma, y se ha ciclado de la tierra al aire y viceversa una y otra vez durante más de 3.000 millones de años.
Propiedades físicas y químicas
El agua pura no tiene olor, sabor, ni color (es decir, es incolora, insípida e inodora). Su importancia reside en que casi la totalidad de los procesos químicos que suceden en la naturaleza, no solo en organismos vivos sino también en la superficie no organizada de la tierra, así como los que se llevan a cabo en laboratorios y en la industria tienen lugar entre sustancias disueltas en agua.
Disolvente
El agua es descrita muchas veces como el solvente universal, porque disuelve muchos de los compuestos conocidos. Sin embargo no lo es (aunque es tal vez lo más cercano), porque no disuelve a todos los compuestos, y de hacerlo no habría contenedor que lo contenga.[1] [2]
El agua es un disolvente polar, más polar, por ejemplo, que el etanol. Como tal, disuelve bien sustancias iónicas y polares, como la sal de mesa (cloruro de sodio), no disuelve apreciablemente sustancias fuertemente apolares, como el azufre en la mayoría de sus formas, y es inmiscible con disolventes apolares, como el hexano. Esta propiedad es de gran importancia para la vida.
Esta propiedad se debe a su capacidad para formar puentes de hidrógeno con otras sustancias que pueden presentar grupos polares, o con carga iónica, como alcoholes, azúcares con grupos R-OH, aminoácidos y proteínas con grupos que presentan cargas + y -, dando lugar a disoluciones moleculares. También las moléculas de agua pueden disolver sustancias salinas que se disocian formando disoluciones iónicas.
En las disoluciones iónicas, los iones de las sales son atraídos por los dipolos del agua, quedando "atrapados" y recubiertos de moléculas de agua en forma de iones hidratados o solvatados.
Algunas sustancias, sin embargo, no se mezclan bien con el agua, incluyendo aceites y otras sustancias hidrofóbicas. Membranas celulares compuestas de lípidos y proteínas, aprovechan de esta propiedad para controlar las interacciones entre sus contenidos químicos y los externos. Esto se facilita en parte por la tensión superficial del agua.
La capacidad disolvente es responsable de:
- Las funciones metabólicas;
- Los sistemas de transporte de sustancias en los organismos.
Polaridad
La molécula de agua es muy dipolar. Los núcleos de oxígeno son muchos más electronegativos (atraen más los electrones) que los de hidrógeno, lo que dota a los dos enlaces de una fuerte polaridad eléctrica, con un exceso de carga negativa del lado del oxígeno, y de carga positiva del lado de los hidrógenos. Los dos enlaces no están opuestos, sino que forman un ángulo de 104,45° debido a la hibridación sp3 del átomo de oxígeno, así que en conjunto los tres átomos forman con un triángulo, cargado negativamente en el vértice formado por el oxígeno, y positivamente en el lado opuesto, el de los hidrógenos. Este hecho tiene una importante consecuencia, y es que las moléculas de agua se atraen fuertemente, adhiriéndose por donde son opuestas las cargas; en la práctica, un átomo de hidrógeno sirve como puente entre el átomo de oxígeno al que está unido covalentemente y un oxígeno de otra molécula. Se llama a la estructura anterior enlace de hidrógeno o puente de hidrógeno. El hecho de que las moléculas de agua se adhieran electostáticamente, a su vez modifica muchas propiedades importantes de la sustancia que llamamos agua, como la viscosidad dinámica, que es muy grande, o los puntos (temperaturas) de fusión y ebullición o los calores de fusión y vaporización, que se asemejan a los de sustancias de mayor masa molecular.
Cohesión
La cohesión es la propiedad con la que las moléculas de agua se atraen a sí mismas, por lo que se forman cuerpos de agua adherida a sí misma, las gotas.
Los puentes de hidrógeno mantienen las moléculas de agua fuertemente unidas, formando una estructura compacta que la convierte en un líquido casi incompresible. Al no poder comprimirse puede funcionar en algunos animales como un esqueleto hidrostático, como ocurre en algunos gusanos perforadores capaces de agujerear la roca mediante la presión generada por sus líquidos internos. Estos puentes se pueden romper facilmente con la llegada de otra molécula con un polo negativo o positivo dependiendo de la molécula, o, con el calor.
La fuerza de cohesión permite que el agua se mantenga líquida a temperaturas no extremas.
Adhesión
El agua, por su gran potencial de polaridad, cuenta con la propiedad de la adhesión, es decir, el agua generalmente es atraída y se mantiene adherida a otras superficies. Esto es lo que se conoce comúnmente como "mojar".
Esta fuerza está también en relación con los puentes de hidrógeno que se establecen entre las moléculas de agua y otras moléculas polares y es responsable, junto con la cohesión, del llamado fenómeno de la capilaridad.
Tensión superficial
Por su misma propiedad de cohesión, el agua tiene una gran atracción entre las moléculas de su superficie, creando tensión superficial. La superficie del líquido se comporta como una película capaz de alargarse y al mismo tiempo ofrecer cierta resistencia al intentar romperla; esta propiedad contribuye a que algunos objetos muy ligeros floten en la superficie del agua.
Debido a su elevada tensión superficial, algunos insectos pueden estar sobre ella sin sumergirse e, incluso, hay animales que corren sobre ella, como el basilisco. También es la causa de que se vea muy afectada por fenómenos de capilaridad.
Las gotas de agua son estables también debido a su alta tensión superficial. Esto se puede ver cuando pequeñas cantidades de agua se ponen en superficies no solubles, como el vidrio, donde el agua se agrupa en forma de gotas.
Acción capilar
El agua cuenta con la propiedad de la capilaridad, que es la propiedad de ascenso, o descenso, de un líquido dentro de un tubo capilar. Esto se debe a sus propiedades de adhesión y cohesión.
Cuando se introduce un capilar en un recipiente con agua, ésta asciende por el capilar como si trepase "agarrándose" por las paredes, hasta alcanzar un nivel superior al del recipiente, donde la presión que ejerce la columna de agua se equilibra con la presión capilar. A este fenómeno se debe en parte la ascensión de la savia bruta, desde las raíces hasta las hojas, a través de los vasos leñosos.
Viscosidad
Calor específico
También esta propiedad está en relación con los puentes de hidrógeno que se crean entre las moléculas de agua. El agua puede absorber grandes cantidades de calor que utiliza para romper los puentes de hidrógeno, por lo que la temperatura se eleva muy lentamente. El calor específico del agua es de 1 cal/°C•g.
Esta propiedad es fundamental para los seres vivos (y la Biosfera en general) ya que gracias a esto, el agua reduce los cambios bruscos de temperatura, siendo un regulador térmico muy bueno. Un ejemplo de esto son las temperaturas tan suaves que hay en las zonas costeras, que son consecuencias de estas propiedad. También ayuda a regular la temperatura de los animales y las células permitiendo que el citoplasma acuoso sirva de protección ante los cambios de temperatura. Así se mantiene la temperatura constante.
La capacidad calorífica del agua es mayor que la de otros líquidos.
Para evaporar el agua se necesita mucha energía. Primero hay que romper los puentes y posteriormente dotar a las moléculas de agua de la suficiente energía cinética para pasar de la fase líquida a la gaseosa. Para evaporar un gramo de agua se precisan 540 calorías, a una temperatura de 20 °C.
Temperatura de fusión y evaporación
Presenta un punto de ebullición de 100 °C (373,15 K) a presión de 1 atm (se considera como estándar para la presión de una atmósfera la presión promedio existente al nivel del mar). El calor latente de evaporación del agua a 100 °C: 540 cal/g (ó 2260 J/g)
Tiene un punto de fusión de 0 °C (273,15 K) a presión de 1 atm. El calor latente de fusión del hielo a 0 °C: 80 cal/g (ó 335 J/g). Tiene un estado de sobreenfriado líquido a -25 °C
La temperatura crítica del agua(es decir aquella a partir de la cual no puede estar en estado líquido independientemente de la presión a la que esté sometida) es de 374ºC y se corresponde con una presión de 217,5 atmósferas.
Densidad
La densidad del agua líquida es muy estable y varía poco con los cambios de temperatura y presión.
A la presión normal (1 atmósfera), el agua líquida tiene una mínima densidad a los 100 °C, donde tiene 0,958 Kg/litro. Mientras baja la temperatura, aumenta la densidad (por ejemplo, a 90 °C tiene 965 Kg/litro) y esa aumento es constante hasta llegar a los 3,8 °C donde alcanza una densidad de 1 Kg/litro. Esa temperatura (3,8 °C) representa un punto de inflexión y es cuando alcanza su máxima densidad (a la presión mencionada). A partir de ese punto, al bajar la temperatura, la densidad comienza a disminuir, aunque muy lentamente (casi nada en la práctica), hasta que a los 0° disminuye hasta 0,9999 Kg/litro. Cuando pasa al estado sólido (a 0° C), ocurre una brusca disminución de la densidad pasando de 0,9999 Kg/litro a 0,917 Kg/litro.
Cristalización
la cristalinización es el estado que pasa de líquido a sólido/liquido cuando la temperatura disminuye en forma constante.
Otras propiedades
- No posee propiedades ácidas ni básicas.
- Con ciertas sales forma hidratos.
- Reacciona con los óxidos de metales formando bases.
- Es catalizador en muchas reacciones químicas.
- Presenta un equilibrio de autoionización, en el cual hay iones H3O+ y OH-
Propiedades biológicas
El agua es esencial para todos los tipos de vida, por lo menos tal y como la entendemos. Las principales funciones biológicas del agua son:
- Es un excelente disolvente, de sustancias tóxicas y compuesto bipolares. Incluso moléculas biológicas no solubles (p.e lípidos) forman con el agua, dispersiones coloidales.
- Participa como agente químico reactivo, en las reacciones de hidratación, hidrólisis y oxidación-reducción.
- Permite la difusión, es decir el movimiento en su interior de partículas sueltas, constituyendo el principal transporte de muchas sustancias nutritivas.
- Constituye un excelente termorregulador (calor específico), permitiendo la vida de organismos en una amplia variedad de ambientes térmicos. Ayuda a regular el calor de los animales. Tiene un importante papel como absorbente de radiación infrarroja, crucial en el efecto invernadero.
- Interviene (plantas) en el mantenimiento de la estructura celular.
- Proporciona flexibilidad a los tejidos.
- Actúa como vehículo de transporte en el interior de un ser vivo y como medio lubricante en sus articulaciones.
La vida en la Tierra ha evolucionado gracias a las importantes características del agua. La existencia de esta abundante sustancia en sus formas líquida, gaseosa y sólida ha sido sin duda un importante factor en la abundante colonización de los diferentes ambientes de la Tierra por formas de vida adaptadas a estas variantes y a veces extremas condiciones.
Destilación
Para obtener agua químicamente pura es necesario realizar diversos procesos físicos de purificación ya que el agua es capaz de disolver una gran cantidad de sustancias químicas, incluyendo gases.
Se llama agua destilada al agua que ha sido evaporada y posteriormente condensada. Al realizar este proceso se eliminan casi la totalidad de sustancias disueltas y microorganismos que suele contener el agua y el resultado es prácticamente la sustancia química pura H2O.
El agua pura no conduce la electricidad (agua pura es el agua destilada libre de sales y minerales)
Tratamiento del agua
En uno de los procesos básicos de purificación y tratamiento del agua que se realiza en plantas industriales, agregando hipoclorito de sodio y sulfato de aluminio, que son agentes coagulantes; esto forma hidróxido de aluminio, que es más conocido como flóculo, que queda flotando en el agua. Este proceso se denomina floculación.
Contaminación del agua
Artículo principal: Contaminación hídrica
El estado natural del agua puede ser afectado por procesos naturales; por ejemplo: los suelos, las rocas, algunos insectos y excrementos de animales. Otra forma como se puede cambiar su estado natural es artificialmente, fundamentalmente, por causas humanas; por ejemplo: con sustancias que cambien el pH y la salinidad del agua, producidas por actividades mineras.
La contaminación del agua ocurre en poblaciones que no tienen desagües, sistemas de disposición de excretas o deficientes procesos de recogida y almacenaje de desechos; y arrojar basuras y aguas fecales (o servidas) a los ríos.
Otra causa es el exceso de nutrientes: fertilizantes vertidos en agua, especialmente los compuestos por fósforo y su derivados, hacen que originen algas en exceso, impidiendo la entrada de luz solar al lago o laguna, y la muerte de los peces. Sustancias tóxicas, como los metales pesados (plomo y cadmio), generan bioacumulación. Los residuos urbanos (aguas negras o aguas servidas), que contienen excrementos, también generan contaminación.
Ciclo del agua
El agua toma diferentes formas en la Tierra: vapor y nubes en el cielo, olas y témpanos de hielo flotante en el mar, glaciares en las montañas, acuíferos en el suelo, por nombrar algunos. A través de la evaporación, precipitación y escorrentía el agua se encuentra en continuo movimiento, fluyendo de una forma a otra en lo que es llamado el ciclo del agua.
Debido a la gran importancia de la precipitación para la agricultura y la humanidad en general, recibe diferentes nombres en sus diferentes formas: mientras que la lluvia es común en la mayoría de los países del mundo, otros fenómenos resultan sorprendentes al verlos por primera vez: granizo, nieve, neblina o rocío por ejemplo. Cuando se iluminan, las gotas de agua en el aire pueden refractar los colores del arco iris.
De manera similar, la escorrentía ha jugado un papel importante en la historia: los ríos y la irrigación acarrean el agua necesaria para la agricultura. Los ríos y los mares ofrecen oportunidades para el viaje y el comercio. Por la erosión, la escorrentía tuvo un papel importante en el moldeo del entorno, formando valles que proveen de tierra rica y suelo nivelado para el establecimiento de lugares poblados.
El agua también se infiltra en el suelo hasta los acuíferos. Este agua subterránea fluye después hasta la superficie en bocas de agua y pozos naturales, o más espectacularmente en géiseres. Este agua también se puede extraer artificialmente con norias y manantiales.
Porque el agua puede contener muchas sustancias diferentes, puede saber u oler de formas distintas. De hecho, el desarrollo de los sentidos permite evaluar la potabilidad del agua.
El cambio del estado en el agua
Estado sólido del agua
Al estar el agua en estado sólido, todas las moléculas se encuentran unidas mediante un enlace de hidrógeno, que es un enlace intermolecular y forma una estructura parecida a un panal de abejas, lo que explica que el agua sea menos densa en estado sólido que en el estado líquido. La energía cinética de las moléculas es muy baja, es decir que las moléculas están casi inmóviles.
El agua glacial sometida a extremas temperaturas y presiones criogénicas, adquiere una alta capacidad subliminal, al pasar de sólida a vapor por la acción energética de los elementos que la integran —oxígeno e hidrógeno— y del calor atrapado durante su proceso de congelación-expansión. Es decir, por su situación de confinamiento a grandes profundidades se deshiela parcialmente, lo cual genera vapor a una temperatura ligeramente superior del helado entorno, suficiente para socavar y formar cavernas en el interior de los densos glaciales. Estas grutas, que además contienen agua proveniente de sistemas subglaciales, involucran a las tres fases actuales del agua, donde al interactuar en un congelado ambiente subterráneo y sin la acción del viento se transforman en el cuarto estado del agua: plasma semilíquido o gelatinoso.
Estado líquido del agua
Cuando el agua está en estado líquido, al tener más temperatura, aumenta la energía cinética de las moléculas, por lo tanto el movimiento de las moléculas es mayor, produciendo quiebres en los enlaces de hidrógeno, quedando algunas moléculas sueltas, y la mayoría unidas.
Estado gaseoso del agua
Cuando el agua es gaseosa, la energía cinética es tal que se rompen todos los enlaces de hidrógeno quedando todas las moléculas libres. El vapor de agua es tan invisible como el aire; el vapor que se observa sobre el agua en ebullición o en el aliento emitido en aire muy frío, está formado por gotas microscópicas de agua líquida en suspensión, lo mismo que las nubes.
Importancia de la posición astronómica de la Tierra
La coexistencia de las fases sólidas, líquidas y gaseosas pero, sobre todo, la presencia permanente de agua líquida, es vital para comprender el origen y la evolución de la vida en la Tierra tal como es. Sin embargo, si la posición de la Tierra en el Sistema Solar fuera más cercana o más alejada del Sol, la existencia de las condiciones que permiten a las formas del agua estar presentes simultáneamente serían menos probables.
La masa de la Tierra permite mantener la atmósfera. El vapor de agua y el dióxido de carbono en la atmósfera causan el efecto invernadero, lo que ayuda a mantener relativamente constante la temperatura superficial. Si el planeta tuviera menos masa, una atmósfera más delgada causaría temperaturas extremas no permitiendo la acumulación de agua excepto en los casquetes polares (como en Marte). De acuerdo con el modelo nébula solar de la formación del Sistema Solar, la masa de la Tierra se debe en gran parte a su distancia al Sol.
La distancia entre el Sol y la Tierra y la combinación de radiación solar recibida y el efecto invernadero en la atmósfera aseguran que su superficie no sea demasiado fría o caliente para el agua líquida. Si la Tierra estuviera más alejada del Sol, el agua líquida se congelaría. Si estuviera más cercana, su temperatura superficial elevada limitaría la formación de las capas polares o forzaría al agua a existir solo como vapor. En el primer caso, la baja reflectibilidad de los océanos causaría la absorción de más energía solar. En el último caso, la Tierra sería inhabitable (al menos por las formas de vida conocidas) y tendría condiciones semejantes a las del planeta Venus.
Las teorías Gaia proponen que la vida se mantiene adecuada a las condiciones por sí misma al afectar el ambiente de la Tierra.
El agua en la vida diaria
Todas las formas de vida conocidas dependen del agua. El agua es parte vital de muchos procesos metabólicos en el cuerpo. Cantidades significantes de agua son usadas durante la digestión de la comida. Sin embargo, algunas bacterias y semillas de plantas pueden entrar a un estado criptobiótico por un período de tiempo indefinido cuando se deshidratan, y vuelven a la vida cuando se devuelven a un ambiente húmedo.
Cerca del 72% de la masa libre de grasa del cuerpo humano está hecha de agua. Para su adecuado funcionamiento nuestro cuerpo requiere entre uno y tres litros de agua diarios para evitar la deshidratación, la cantidad precisa depende del nivel de actividad, temperatura, humedad y otros factores. El cuerpo pierde agua por medio de la orina y las heces, la transpiración y la exhalación del vapor de agua en nuestro aliento.
Los seres humanos requieren agua pobre en sales y otras impurezas. Entre las impurezas también se cuentan sustancias químicas o, en otro sentido, microorganismos perjudiciales. Algunos solutos son aceptables y hasta deseables para un sabor apropiado. El agua adecuada para beber se llama agua potable.
Agua dura
Existe el tipo de agua llamada agua dura, la cual alberga minerales, como son mayores cantidades de carbonatos de calcio y magnesio y sulfatos principalmente, de sulfuro, azufre y hierro, que lleva en si un tanto del óxido rojizo, más aún es bien empleada en el uso cotidiano, incluyendo el consumo, aunque no tenga la nitidez del agua purificada; por consiguiente, el agua dura, dependiendo de los niveles de minerales, tiene sabor y puede ser ligeramente turbia.
También se debe a la presencia de sales cálcicas y magnésicas cuya presencia (dureza temporal) suele producir depósitos de sarro en las teteras y otras superficies en contacto con el agua dura.
Para "mejorar" sus cualidades y hacer del agua dura, agua que no manche con óxido o con sarro se utilizan ablandadores de intercambio iónico, ablandadores de resina regenerable con sal (ablandador) en aparatos especialmente diseñados para el proceso de ablandamiento.
El agua dura puede ser sacada directamente de pozos, dependiendo de la tierra; por lo general, el agua dura no pertenece a una red citadina de distribución, sino que es un recurso del campo. Una forma de cuantificar la dureza total del agua, es sumar la dureza cálcica (concentración de masa de cationes cálcicos Ca2+ en el agua) y la dureza magnésica (concentración de masa de cationes magnésicos Mg2+ en el agua). Mientras más alto el valor de la dureza total, más dura es el agua.
Uno de los métodos más modernos para purificar agua es la ósmosis reversa o inversa.
Un recurso escaso
Debido al crecimiento de la población humana y otros factores, la disponibilidad del agua potable por persona está disminuyendo. Este problema podría resolverse obteniendo más agua, distribuyéndola mejor o desperdiciándola menos.
El agua es un recurso estratégico para muchos países. Se han peleado muchas guerras, como la Guerra de los seis días en el Medio Oriente, para poder obtener un mejor acceso al agua. Se prevé más problemas de este tipo en el futuro por la creciente población humana, contaminación y calentamiento global.
El World Water Development Report (informe mundial del desarrollo del agua) de la UNESCO (2003) de su World Water Assessment Program (Programa mundial para la estimación del agua) indica que en los próximos 20 años, la cantidad de agua disponible para todos decrecerá en un 30%. El 40% de los habitantes del mundo actualmente no tiene la cantidad mínima necesaria para el mínimo aseo. Más de 2,2 millones de personas murieron en el año 2000 por enfermedades relacionadas con el consumo de agua contaminada o por ahogamiento. En 2004 el programa de caridad enfocado al agua WaterAid del Reino Unido informó que un niño muere cada 15 segundos debido a las enfermedades relacionadas con el agua que podrían fácilmente evitarse.
Posibles soluciones para mejorar la disponibilidad del agua
Posibles soluciones para mejorar la disponibilidad del agua: producir más, distribuirla mejor y desperdiciarla menos. Hervirla y destilarla. Existen otras técnicas más avanzadas, como la ósmosis inversa.
- Distribuirla mejor: La distribución del agua se lleva a cabo por medio de los sistemas de agua municipales o como agua embotellada. Algunos países tienen programas para distribuir el agua a los más necesitados libre de cargos.
Cabe también resaltar la preocupación cada vez mayor por sustentar mecanismos de medición del agua que se consume en los países en desarrollo con el fin de tener un mayor control sobre su consumo y sobre el transporte del líquido elemento hacia los consumidores.
- Reutilizarla: El agua (H2O) es la misma molécula, tanto en el agua potable como en las aguas servidas, la de las cloacas, para ser claros. La diferencia está, y no es poca cosa, en las sustancias, orgánicas o inorgánicas disueltas y trasportadas en suspensión por ésta. Por lo tanto, el agua puede ser en teoría, reutilizada infinitamente, y de hecho, en eso se basa justamente el "ciclo del agua". Por lo tanto, si el agua la devolviéramos a la naturaleza, en un estado de pureza suficiente para que los mecanismos naturales de depuración pudieran limpiarla, la disponibilidad del recurso hídrico mejoraría.
Desde un punto de vista político, el agua podría llegar a ser declarado un derecho humano, [1] y algunos países como Uruguay o España han dado pasos en ese sentido al declararlo un bien colectivo [2] o de dominio público.
El agua en la cultura humana
El agua es considerado purificador en muchas religiones, incluyendo el Cristianismo, el Islam y el Judaísmo. Por ejemplo, el bautizo en las iglesias cristianas se lleva a cabo con agua. También un baño ritual con agua pura se celebra para los muertos en muchas religiones incluyendo el Judaísmo y el Islam. En el Islam, el Salah diario solo se puede hacer después de la Ablución que consiste en lavarse partes del cuerpo con agua limpia. En el Shinto, el agua se usa en casi todos los rituales para purificar a una persona o lugar.
Al agua se le da poderes espirituales en muchas ocasiones. En la mitología celta, Sulis es la diosa local de las aguas termales; en la cultura hindú, la Ganga es personificada como una diosa. Alternativamente, los dioses pueden ser patrones de algunas aguas, ríos o lagos; en la mitología griega y romana, Peneus era un dios de un río.
Empédocles, un filósofo griego, sostenía que el agua era uno de los cuatro elementos clásicos junto con el fuego, la tierra y el aire, y era la materia primordial del Universo o ylem. En la teoría de los cuatro humores corporales, el agua se asocia con el phlegm. El agua también era uno de los Cinco elementos en el Taoísmo chino, junto con la tierra, el fuego, la madera y el metal,
La Fundación Nueva Cultura del Agua es una entidad fundada por dos universidades, la Universidad de Zaragoza y la Universidad Politécnica de Valencia junto a un grupo de personas que promueven una Nueva Cultura del Agua.
¿Agua que desafía la humedad?
Por definición el agua se mezcla fácilmente con otra de su clase; brazos abiertos (puentes) de hidrógeno se enlazan con el oxígeno de otros radicales hidroxilos (OH). Esta es la propia definición de "humedad". Pero científicos del PNNL (Pacific Northwest National Laboratory) han observado una primicia: una monocapa de agua (hielo que ha crecido en una oblea de platino) que repele capas subsecuentes de hielo que entran en contacto con ella.
Las interacciones del agua con superficies son ubicuas en la naturaleza y desempeñan un papel importante en muchas aplicaciones tecnológicas tales como la catálisis y la corrosión.
Se había asumido que un extremo de la molécula de agua se enlazaría con el metal, y al otro extremo estarían estos conocidos puntos para la formación de puentes de hidrógeno con los átomos en la próxima capa de agua.
Los investigadores usaron una técnica que utiliza criptón para sondear superficies metálicas y capas de agua en esas superficies. Encontraron que la primera capa de agua, o monocapa, humedecía la superficie de platino como habían esperado, pero las capas subsecuentes no mojaron la primera. En otras palabras, la primera capa de agua es hidrofóbica.
Esta agua que rechaza al agua en el metal es más que una curiosidad, y constituirá una sorpresa para muchos especialistas que han asumido que las películas de agua cubren uniformemente las superficies.
Se han hecho cientos de experimentos en películas delgadas de agua formadas en superficies de metal para aprender cosas acerca de cómo estas películas afectan a las moléculas con las que entran en contacto, y qué papel tienen en estas interacciones el calor, la luz y la radiación de alta energía. [3]
Véase también
Enlaces externos
- Wikimedia Commons alberga contenido multimedia sobre Agua.Commons
- Wikilibros alberga un libro o manual sobre Manual de Ingeniería Sostenible del Agua.
- Portal del agua de la Unesco UNESCO Agua, desarrollo sostenible y protección de los recursos mundiales de agua dulce.
- Programa Mundial de Evaluación de los Recursos Hídricos
- Programa GEMS/Agua de la ONU
- Consenso científico sobre los desinfectantes del agua en GreenFacts
- Fundación Nueva Cultura del Agua
- La gota de agua. Un ensayo sobre la privatización del agua, por Cathy García.
- Agua y Seguridad Nacional
- Agua, usos y abusos
- La escasez del agua en España
- Agua Embalsada en España
- Portal sobre la problemática del agua a nivel global
- Conversaciones sobre el agua Serie de entrevistas/conversaciones con personas que operan