Recoverability from aborts 
· if a transaction aborts, the server must make sure that other concurrent transactions do not see any of its effects

· we study two problems:

· ‘dirty reads’ 

· an interaction between a read operation in one transaction and an earlier write operation on the same object (by a transaction that then aborts)

· a transaction that committed with a ‘dirty read’ is not recoverable

· ‘premature writes’

· interactions between write operations on the same object by different transactions, one of which aborts

· If a transaction (like U) commits after seeing the effects of a transaction that subsequently aborted, it is not recoverable

For recoverability:
A commit is delayed until after the commitment of any other transaction whose state has been observed

Cascading aborts
· Suppose that U delays committing until after T aborts. 

· then, U must abort as well. 

· if any other transactions have seen the effects due to U, they too must be aborted. 

· the aborting of these latter transactions may cause still further transactions to be aborted. 

· Such situations are called cascading aborts.

To avoid cascading aborts

transactions are only allowed to read objects written by committed transactions.

to ensure this, any read operation must be delayed until other transactions that applied a write operation to the same object have committed or aborted
