Transaction recovery
· Atomicity property of transactions

· durability and failure atomicity

· durability requires that objects are saved in permanent storage and will be available indefinitely

· failure atomicity requires that effects of transactions are atomic even when the server crashes

· Recovery is concerned with

· ensuring that a server’s objects are durable and

· that the service provides failure atomicity.

· for simplicity we assume that when a server is running, all of its objects are in volatile memory

· and all of its committed objects are in a recovery file in permanent storage

· recovery consists of restoring the server with the latest committed versions of all of its objects from its recovery file

Recovery manager
· The task of the Recovery Manager (RM) is:

· to save objects in permanent storage (in a recovery file) for committed transactions;

· to restore the server’s objects after a crash;

· to reorganize the recovery file to improve the performance of recovery;

· to reclaim storage space (in the recovery file).

· media failures

· i.e. disk failures affecting the recovery file

· need another copy of the recovery file on an independent disk. e.g. implemented as stable storage or using mirrored disks

· we deal with recovery of 2PC separately (at the end)

Recovery - intentions lists
· Each server records an intentions list for each of its currently active transactions

· an intentions list contains a list of the object references and the values of all the objects that are altered by a transaction

· when a transaction commits, the intentions list is used to identify the objects affected

· the committed version of each object is replaced by the tentative one

· the new value is written to the server’s recovery file

· in 2PC, when a participant says it is ready to commit, its RM must record its intentions list and its objects in the recovery file

· it will be able to commit later on even if it crashes

· when a client has been told a transaction has committed, the recovery files of all participating servers must show that the transaction is committed,

· even if they crash between prepare to commit and commit
Logging - a technique for the recovery file
· the recovery file represents a log of the history of all the transactions at a server

· it includes objects, intentions lists and transaction status

· in the order that transactions prepared, committed and aborted

· a recent snapshot + a history of transactions after the snapshot

· during normal operation the RM is called whenever a transaction prepares, commits or aborts

· prepare - RM appends to recovery file all the objects in the intentions list followed by status (prepared) and the intentions list

· commit/abort - RM appends to recovery file the corresponding status

· assume append operation is atomic, if server fails only the last write will be incomplete

· to make efficient use of disk, buffer writes. Note: sequential writes are more efficient than those to random locations

· committed status is forced to the log - in case server crashes

[image: image1]
Recovery of objects - with logging
· When a server is replaced after a crash

· it first sets default initial values for its objects

· and then hands over to its recovery manager.

· The RM restores the server’s objects to include

· all the effects of all the committed transactions in the correct order and

· none of the effects of incomplete or aborted transactions

· it ‘reads the recovery file backwards’ (by following the pointers)

· restores values of objects with values from committed transactions

· continuing until all of the objects have been restored

· if it started at the beginning, there would generally be more work to do

· to recover the effects of a transaction use the intentions list to find the value of the objects

· e.g. look at previous slide (assuming the server crashed before T committed)

· the recovery procedure must be idempotent

Logging - reorganising the recovery file
· RM is responsible for reorganizing its recovery file

· so as to make the process of recovery faster and

· to reduce its use of space

· checkpointing

· the process of writing the following to a new recovery file

· the current committed values of a server’s objects,

· transaction status entries and intentions lists of transactions that have not yet been fully resolved

· including information related to the two-phase commit protocol (see later)

· checkpointing makes recovery faster and saves disk space

· done after recovery and from time to time

· can use old recovery file until new one is ready, add a ‘mark’ to old file

· do as above and then copy items after the mark to new recovery file

· replace old recovery file by new recovery file

Summary of transaction recovery
· Transaction-based applications have strong requirements for the long life and integrity of the information stored.

· Transactions are made durable by performing checkpoints and logging in a recovery file, which is used for recovery when a server is replaced after a crash.

· Users of a transaction service would experience some delay during recovery.

· It is assumed that the servers of distributed transactions exhibit crash failures and run in an asynchronous system,

· but they can reach consensus about the outcome of transactions because crashed servers are replaced with new processes that can acquire all the relevant information from permanent storage or from other servers

Figure 14.18

file of value of object>.

which consists of <identifier of object>, <position in recovery

Transaction identifier and a sequence of intentions, each of

Intentions list

commit protocol.

) and other status values used for the two-phase

aborted

committed

,

prepared

Transaction identifier, transaction status (

Transaction status

A value of an object.

Object

Description of contents of entry

Type of entry

