Transactions with replicated data
· objects in transactional systems are replicated to enhance availability and performance

· the effect of transactions on replicated objects should be the same as if they had been performed one at a time on a single set of objects.

· this property is called one-copy serializability.

· it is similar to, but not to be confused with, sequential consistency.

· sequential consistency does not take transactions into account

· each RM provides concurrency control and recovery of its own objects

· we assume two-phase locking in this section

· replication makes recovery more complicated

· when an RM recovers, it restores its objects with information from other RMs

Architectures for replicated transactions
· We assume that an FE sends requests to one of a group of RMs

· in the primary copy approach, all FEs communicate with a single RM which propagates updates to back-ups.

· In other schemes, FEs may communicate with any RM and coordination between RMs is more complex

· an RM that receives a request is responsible for getting cooperation from the other RMs

· rules as to how many RMs are involved vary with the replication scheme

· e.g. in the read one/write all scheme, one RM is required for a read request and all RMs for a write request

· propagate requests immediately or at the end of a transaction?

· in the primary copy scheme, we can wait until end of transaction (concurrency control is applied at the primary)

· but if transactions access the same objects at different RMs, we need to propagate the requests so that concurrency control can be applied

· two-phase commit protocol

· becomes a two-level nested 2PC. If a coordinator or worker is an RM it will communicate with other RMs that it passed requests to during the transaction

Available copies replication
· the simple read one/write all scheme is not realistic

· because it cannot be carried out if some of the RMs are unavailable,

· either because the have crashed or because of a communication failure

· the available copies replication scheme is designed to allow some RMs to be temporarily unavailable

· a read request can be performed by any available RM

· writes requests are performed by the receiving RM and all other available RMs in the group

Available copies – read one/ write all available
· local concurrency control achieves one-copy serializability provided the set of RMs does not change.

· but we have RMs failing and recovering

Available copies
· Replica manager failure

· An RM can fail by crashing and is replaced by a new process

· the new process restores its state from its recovery file

· FEs use timeouts in case an RM fails

· then try the request at another RM

· in the case of a write, the RM passing it on may observe failures

· If an RM is doing recovery, it rejects requests (& FE tries another RM)

· For one-copy serializability, failures and recoveries are serialized with respect to transactions

· that is, if a transaction observes that a failure occurs, it must be observed before it started or after it finished

· one-copy serializability is not achieved if different transactions make conflicting failure observations

Available copies replication
· Local validation (the additional concurrency control)

· before a transaction commits, it checks for failures and recoveries of the RMs it has contacted

· e.g. T would check if N is still unavailable and that X, M and P are still available.

· If this is the case, T can commit.

this implies that X failed after T validated and before U validated

· i.e. we have N fails ((T commits ((X fails ((U validates

· (above, we said X fails before T’s deposit, in which case,T would have to abort)

· U checks if N is still available (no) and X still unavailable

· therefore U must abort

