Literacy Learning in the Context of Inquiry-Based Science

22nd World Congress on Reading: Reading in a Diverse World San José, Costa Rica July 29, 2008

Context of Our Work

- Curriculum development and research project focused on exploring the interface of science and literacy
- Partnership between
 - Lawrence Hall of Science and
- UC Berkeley Graduate School of EducationFunded mainly through National Science
 - Foundation and IES grants
- Currently developing 12 integrated scienceliteracy units for grades 2-5

Session Overview

Science & Literacy Integration:

- 1. Existing Research and Theoretical Base
- 2. A Curricular Model for Integrating in the Elementary grade Classrooms
- 3. Some Research results
- 4. Directions of our Future Research

Existing Research and Theoretical Base on Literacy and Science Integration

WEE (Wo Anderson, West,	ndering, Exploring, Beck, MacDonnell, a	<i>Explaining)</i> and Frisbie (1997)
Approach	Method	Findings
Integrated Non- fiction reading & writing with science	5th grade Students involved in: Pose wonderment Explore/gather information Explain/ summarize what they found out	high levels of student excitement, involvement & learning

Roles of Authentic Experience				
Purcell-Ga	tes, Duke & Martine	eau (2007)		
Approach	Method	Findings		
authenticity of literacy activities & learning to read and write science informational text genres	infused 2nd/ 3rd grade classrooms with target informational science text genres and monitored, degree of authenticity of literacy activities	Degree of authenticity related to student growth in reading comprehension and writing of the genres		

Palincsar and Magnusson (2000)			
Approach	Method	Findings	
Use secondhand experiences in science to prepare students for firsthand investigations and provide common inquiry	compare learning outcomes of 4th grade students studying light in classrooms using GIsML, including the scientist's notebook with students using other texts.	secondhand investigations helped learn more science, make better inferences, and engage in richer scientific conversations	

Guthrie, Ande	erson, Alao, and R	inenart (1999)
Approach	Method	Findings
embeds literacy instruction in content-area instruction to promote sustained reading engagement	3 rd and 5 th grade CORI classrooms, compared to those in traditionally organized classrooms	CORI increased conceptual learning, strategy use, and text comprehension

ni-deptri Expan	mance & Vitale (19	992)
Approach	Method	Findings
Replaces time allocated for ELA instruction with 2- hour science block	concept-focused science instruction & involved firsthand experiences, attention to science process skills, discussion, reading, concept mapping, and journal writing.	IDEAS students outpace students receiving traditional instruction on standardized measures of science and reading

Dialogically-Oriented Read Alouds			
Pappas, Varelas, Barry, & Rife (2002)			
Approach	Method	Findings	
Use collaborative, dialogically- oriented read alouds of science text	Qualitatively examined the dialogues that took place around science information books embedded in 4-6 week units	Found that intertextuality supported students in sense-making about science, developing scientific understandings, and using scientific registers.	

Stoddart,	Pinal, Latske & Cana	day (2002)
Approach	Method	Findings
Utilize CREDE 5 standards of effective pedagogy in science content (emphasis on science vocabulary)	Provided PD work to teachers around science discourse, particularly utilizing and unpacking science vocabulary	ELLs in grades first through fifth posted significant in their use of complex science vocabulary (e.g., species, fossil, habitat) & accuracy of scientific propositions

Why integrate science and literacy?

- Science provides an engaging and meaningful context for reading, writing, and discussion.
- There is evidence that an integrated approach is beneficial for student learning in both domains.
- Can provide exposure to and interaction with genres of text that are authentic to science yet less frequently found in elementary classroom
- Potential for supporting English language learners' development of academic language.
- Reading and writing are important elements of the work of practicing scientists.

A Curricular Model for Integrating Science and Literacy in the Elementary Classroom

Model of Integration: Overview

- · Principles of Integration
- Synergies between Science and Literacy
- Enactment in Curriculum Materials

Guiding Principles of Science-Literacy Integration

Employ multiple learning modalities

Engage students in firsthand and secondhand investigations to make sense of the world

Capitalize on synergies between science and literacy

See the relevance

Read

Students read a book that connects the unit to real world examples

Make observations

Do

Students investigate the properties of various ingredients when dry and mixed with water.

Evaluate evidence and make decisions

Talk

Students evaluate what they have learned about ingredients and properties to design a glue that is sticky.

Create procedural texts

Write

Students use procedural writing to record their glue recipes so others can make and test their glues.

Read about other work from "the field"

Read Students read about a food scientist who designs and tests new jelly beans

Connect to the practices of science

Talk

Students reflect on how their design process is like that used by the jelly bean scientist

Instru	ction in	Multiple	Modalii	ties
Investigate	Read	Investigate	White Write	Talk

Duardala a antarat	Connect to the world
Provide context	outside the classroom
Model	Demonstrate a process or disposition
Support secondhand investigations	Provide data for students to interpret
Support firsthand investigations	Provide information for investigations
Deliver content	Read to learn about science

© 2005 G. Cervetti & J.Barber (from "Jess Makes Hair Gel and What if Rain Boots Were Made of Paper?: Using Science Texts as a Key Part of the Inquiry Process," a paper presented at the International Reading Association annual meeting)

Employ multiple learning modalities Engage students in firsthand and secondhand investigations to make sense of Capitalize on synergies between science and literacy

Synergy A: Words are Concepts

- Words are labels for concepts and ideas
- Excellent vocabulary development is nearly indistinguishable from excellent concept development
- Learning the academic language of science means forming rich conceptual networks of words

What does it mean to know a word?

Recognition	Definitional
Recognizing word when it is heard or read	Knowing what the word means
Relational	Contextual
Understanding how the word is related to other words	Being able to use the word in various appropriate contexts

Our approach to teaching words as concepts

- · Emphasize a few powerful science words
- interact, transmit, reflect, absorb, emit, travel, source, refract, material, block, ray, lens, shadow, energy, transformation, characteristic
- Provide repeated opportunities for exposure and practice
- Teach words through text, talk, and experience
- Teach words as networks of related concepts

Synergy B: *Inquiry strategies* are comprehension strategies

- Strategies that students learn in order to comprehend text are the same as those they learn to investigate in science
- The cognitive process used in both domains is extremely similar
- Students learn to flexibly apply strategic thinking in both domains

Inquiry or comprehension?

- · Making inferences
- · Posing questions
- · Setting goals
- · Making predictions
- · Visualizing and using mental models
- Synthesizing information from multiple sources

Our approach to teaching inquiry/comprehension strategies

- Target pairs of inquiry/comprehension strategies in each unit
- Pose questions and use terminology that invokes the use of the strategies when reading and when investigating
- Gradual release of responsibility, beginning with explicit instruction and moving towards independent application
- Students reflect on the similarity of these cognitive strategies

Making Predictions

 Students make predictions about which materials will reflect light, then test their predictions by investigating.

Making Inferences

 Students simulate an oil spill and make inferences about the properties and effects of oil in the ocean. They then read about a real oil spill that happened off the coast of Spain, and make inferences about the impact of the spill as they read.

Synergy C: Science is a discourse

- Science is all about language...but language is more than words. Science is a discourse involving ways of communicating; that is, talking, writing, and being.
- Learning science includes learning the ways that scientists describe, explain, predict, synthesize, and argue
- Ways of communicating in science are different from those of everyday life

Our approach to teaching science as a discourse

- Scaffold students' oral and written language development
- Contrast the language of science with everyday language
- · Increase the frequency of student-student talk
- Explicitly teach genres of science writing (including visual representations of information)
- · Reflect on what scientists do and how scientists work

Science-Everyday Words

Scientific Language	Everyday Language
conclude	figure out
classify	group
predict	guess
investigate	find out about
observe	look
demonstrate	show
report	tell what
explain	tell how or why
record	write down
analyze	think about
evidence	clues

Science-Literacy Integration

- · Is multimodal
- Provides opportunities to work iteratively between text and experience
- Capitalizes on parallel strategies and processes in both domains
- · Balanced attention to both domains
- · Is integrative, not additive

Science & Literacy Integration: Evidence from Research

Research Studies

- Efficacy Study
- Science Attitudes
- Science Vocabulary
- Science Text Genre

Efficacy Study

- Research Question: How do students who receive a combined science/literacy curriculum compare in literacy & science outcomes to students that just receive science, just literacy and those that get no treatment?
- 89 teachers from 21 states each involved in one or more trials (randomly assigned to experimental or comparison conditions)
- 2nd grade, 3rd grade & mixed grade classrooms
- 1/3 30%+ English learners
- Mix of urban, rural, and suburban settings

С	ompar	rison co	onditior	าร	
 Science original based 	-Only Cor science-o	nparison (nly unit on	Groups: Im which the	plement revision is	
– Literacy literacy	 Literacy-Only Comparison Group: Implement a literacy program using the integrated books 				
– No-Trea	 No-Treatment Comparison Group: Administer assessments, but do not implement any of the interventions 				
interven	tions	ao not im	plement ar	ny of the	
interven	tions Science- Literacy	GO NOT IM Science- Only	Literacy- Only	No- Treatment	
Shoreline ecosystem	Science- Literacy 24	CONOTIM Science- Only 10	Diement ar Literacy- Only	No- Treatment	

1. Besides rocks, what are two other things that sand can be made of?_

2. How can a rock become sand?

- 3. Some of the sand grains on the beach are black. Where do you think the sand comes from?
 - a. California
 - b. A dark place
 - c. The desert
 - d. Volcano

Sample Literacy Assessment items

<u>The Beach</u>

The place where land meets water is called a shoreline. Many shorelines are beaches. Beaches are (have, places, ball) where people can walk some of (the, have, hold) time. Beaches can be covered with (how, mud, draw) or rocks. However, many beaches are (covered, go, the) with sand. All sand is not (dog, alike, after). Some sand grains are large and (down, look, the) like pieces of shell. Others are (small, its, by) and look like glass.

2. wearing away 1. helpful behavior or structure

- a. prediction b. adaptation
- a. reproduce b. erosion
- c. habitat d. statement
- c. inference d. danger

Science Results

- Students in integrated groups outperformed students in all other comparison groups on measures of science knowledge
 - Shoreline Science: science-only (p<0.5; std. effect size=.40). Terrarium Investigations: science-only (p<.01, std. effect size
 - .64); no-treatment (p<.05; std. effect size .40), literacy-only group (p<.05; std effect size=.30).

Literacy Results

- Experimental students outperformed students in all other comparison groups on measures of science vocabulary except LO for TI.
 - Shoreline Science: science-only (p < .01, std. effect size = .34) _
 - Terrarium Investigations: science-only (p<.05; effect size .06); no-treatment groups (p<.01, effect size .8).
- Experimental students outperformed students in the SO and NT groups on assessments of science text comprehension. In the Terrarium Investigations trial, Seeds/Roots students performed similarly to students in the LO group.
 - Shoreline Science: science-only (p<.01, std. effect size = .58)
 Terrarium Investigations: science-only (p<.01, effect size of .51, SD: 1.14)

Science Attitudes

- · Research Question:
 - Does science/literacy integrated instruction effect students' attitudes toward science, students' efficacy beliefs about themselves as science learners?
- Girod (2005) examined student attitudes in three units on Soil:
 - an integrated science-literacy unit;
 an inquiry-only unit developed at LHS;

 - and mainly textbook unit from one of the major educational publishers.

Exemplar for the Feelings toward Science Inventory

Factor	Exemplar
Affect	"I have a good feeling toward science" and "Science is fun"
Interest	I enjoy learning science" and "Science is interesting to me"
Efficacy	"I believe I will do well in science" and " I think I am capable of learning science"
Identity	"I can imagine myself as a scientist"

Findings

- · Found significant effects in favor of the integrated classrooms on measures of:
 - · conceptual understanding
 - affect
 - interest
 - efficacy
 - identity

Science Vocabulary

Research Questions

 Do students make gains in their use of science vocabulary as taught in a scienceliteracy integrated curriculum?
 Core unit conceptual vocabulary

- (e.g. shelter, habitat, moisture)
- Cross-unit inquiry words
- (e.g. evidence, investigate, predict)

Assessment Magazines

- · Literacy section and science section
- Integrated with curriculum
- Includes open-ended reading comprehension and science knowledge questions
- Administered by the teachers near the beginning and near the end of the unit

Unit	N	Mean gain	Pooled S.D.	Effect Size
Terrarium Investiga- tions	251	2.9	5.13	.6**
Designing Mixtures	204	1.02	2.34	.4**

Sample Student Response: Science Vocabulary

Pretest Response	Posttest Response
Why are meadows beautiful?	What kind of shelter is there in forests? I wonder how spiders survive in the winter?

Sample Stu Science	dent Response: Vocabulary
What is a habitat?	
Pretest Response	Posttest Response
A place where animals live.	A place where an animal lives, finds food, gets moisture, gets protection, and gets shelter.

Participants

- Seventy-four students in the summer before fourth grade (n=28) or the first month of fourth (n=46) across 5 schools in California's East Bay and Santa Cruz areas participated in the study.
 - 45 girls and 29 boys
 - 25 were English Learners, 3 were redesignated, and 44 EO kids (2 unknown)
 - 30 (42%) are Hispanic; 16 (23%) Asian; 15 (21%) White; 10 (14%) African American (3 unknown)

Procedures

- One 45-minute one-on-one interview. Students:
 - Read a set of hf words from the TOWRE
 - Answered attitudinal questions about book topics
 - Read two of the science texts --one narrative and one informational (100 words aloud)
 - Oral retelling
 - Respond to a series of comprehension questions
 - Indicated preference for one text

	The Texts	3
	Topic: Snails	Topic: Sand
Genre: Narrative	Gail's Snail Tale	Sandy's Journey to the Sea
Genre: Informational	Snail Tales	From Rocks to Sand

Snail Texts

_

Snails begin their lives as eggs hidden under the soil. After a few weeks, the eggshells break open and tiny snails crawl out. Little snails begin eating as soon as they come out of their shells. They start by eating the empty eggshells. Then they dig their way to the surface of the soil and look for plants to eat.

Snail Tales

Gail's Snail Tale Deep in the soil, the shell of an egg broke open. Out came a brand-new snail named Gail. Gail quickly ate the eggshell but she was still hungry. Slowly, she dug out of the soil. Gail could not see well. However, she had a good sense of small. Gail smelled plants nearby. Gail used her short tentacles to find the good-smelling plants. Then she began doing what would keep her busy for the coming months--eat, eat, eat!

Oral Retelling

 Task: Tell "everything you remember about the book."

Oral Retelling Results

- Analysis: Extent to which cross-text concepts appear in retellings.
- Retellings of narrative texts are longer than those for informational texts.
- Sand Passages: 8/10 concepts were more often recalled by readers of the informational text.
- Snail Passages: 10/14 concepts were more often recalled by readers of the informational text.
- On the sand passages, the dif. is statistically significant, but not on the snail passages.

	r totoning Eorigin				
Unit	Average Number of Words				
Gail's Snail Tale (N)	83.3				
Snail Tales (I)	69.8				
Sandy's Journey to the Sea (N)	82.9				
Rocks to Sand (I)	57.8				
Informational Texts	63.5				
Narrative Texts	82.9				

Comprehension Task: Respond to 10 comprehension questions for each passage. • Where does sand come from? • What causes rocks to break apart? • How do the rocks from the mountain reach the seashore? • Why might pieces of the same rock end up in different places? • What role do waves play in the formation of sand?

- Comprehension Results Analysis of Variance revealed an overall effect for topic, but not genre.
- Irrespective of genre, students performed better on comprehension questions related to the snail topic (*M*=10.65, *SD*=3.91) than the sand topic (*M*=8.22; *SD*=4.04, *F*=37.176; *p*=.000).
- Overall, the effect of topic is significant only significant for the sand/rock topic. When the topic is snails, the influence of genre is not significant, but when the topic is sand, the influence of genre is significant (F=10.57; p=.002). (See Tables 7 and 8.)

Preferences

· Task: Select book of the two that "you would choose to read."

Efficacy Studies: Grades 4 & 5

Design

- 100 classrooms
- Experimental: Seeds/Roots unit
- Control: "business-as-usual" science teaching of same content
- Measures
 - Reading comprehension
 - Science vocabularyScience content knowledge
 - Inquiry
 - Writing
 - Attitudes towards science

Semilla

- Design
 - 20 classroom teachers • 10 ELL Experience----10 No/Little ELL Experience
- Research Questions

 - Can curriculum materials that are designed to support teacher learning, as well as student learning, have positive impacts on teacher knowledge, attitudes, and instructional practices? To what degree do educative curriculum materials help teachers who have more and less experience teaching English language learners and how does level of ELL teaching experience relate to teacher knowledge, attitudes, and instructional practices?
- Measures
 - Student: language proficiency, vocabulary, science
 - knowledge, attitudes (toward science & language), - Teacher: pedagogical content knowledge, efficacy-
 - beliefs questionnaire, classroom observation,

Pilot: Vocabulary Measure Development

- Design
 - Preliminary validation during Seeds/Roots field test
 - 30 classrooms
 - Fourth grade

Construct Development

- · Which of these is an example of precipitation?
- · Which of these sentences uses the word precipitation correctly?
- Can precipitation start a fire?
- Which two words are most closely related to precipitation? (Choose two.)
 - WindSnow

 - Cloud
 - Temperature Phase Change

www.scienceandliteracy.org