Variance

Variance measures variability (or dispersion). Therefore, variance is a measure of variability or dispersion of the random variable about its mean. The mathematical expression of the variance is as follows:

$$Var(x) = \sigma^2 = \sum_{i}^{n} (x_i - \mu)^2 f(x_i)$$

where $f(x_i)$ is the probability of x_i . Since μ is unknown, it is replaced by the estimated sample mean (\bar{x}) in the calculations.

Illustration

A company has information available concerning the number of months for carrying out a given project, with their respective probabilities. This illustration shows how to calculate the expected value of the number of months to complete the project.

Example: completion time for a project Probability distribution Variance

x_i	$f(x_i)$	$(x_i - \bar{x})^2$	$(x_i - \bar{x})^2 f(x_i)$
5 6 7 8 9	0.15 0.25 0.30 0.15 0.15	3.61 0.81 0.01 1.21 4.41	$\begin{array}{c} 0.542 \\ 0.203 \\ 0.003 \\ 0.182 \\ 0.662 \end{array}$

$$\bar{x} = \sum_{i=1}^{5} x_i f(x_i) = 6.90 \quad \text{months}$$

$$Var(x) = s^2 = \sum_{i=1}^{5} (x_i - \bar{x})^2 f(x) = 1.59$$
 months²