
P E T E R G A S S T O N

M U L T I - D E V I C E W E B D E V E L O P M E N T

W I T H H T M L 5 , C S S 3 , A N D J A V A S C R I P T

T H E M O D E R N W E BT H E M O D E R N W E B

$34.95 ($36.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut. SHELVE IN
:

COM
PUTERS/W

EB PROGRAM
M

ING

Today’s web technologies are evolving at near–light speed,
bringing the promise of a seamless Internet ever closer to
reality. When users can browse the Web on a three-inch

His plain-English explanations and practical examples
development, including HTML5, CSS3, and JavaScript.

emphasize the techniques, principles, and practices that

A G U I D E T OA G U I D E T O
M O D E R N W E BM O D E R N W E B

D E V E L O P M E N TD E V E L O P M E N T

Peter Gasston’s The Modern Web will guide you through
the latest and most important tools of device-agnostic web

phone screen as easily as on a fifty-inch HDTV, what’s a
developer to do?

and stay relevant as these technologies are updated.
you’ll need to easily transcend individual browser quirks

Learn how to:

multiple devices
• Plan your content so that it displays fluidly across

• Design websites to interact with devices using the most
up-to-date APIs, including Geolocation, Orientation, and
Web Storage

• Incorporate cross-platform audio and video without
using troublesome plug-ins

• Make images and graphics scalable on high-resolution
devices with SVG

• Use powerful HTML5 elements to design better forms

Turn outdated websites into flexible, user-friendly ones
that take full advantage of the unique capabilities of any
device or browser. With the help of The Modern Web,
you’ll be ready to navigate the front lines of device-
independent development.

of The Book of CSS3, Gasston has also been published

A B O U T T H E A U T H O R

Peter Gasston has been a web developer for more than
12 years in both agency and corporate settings. The author

in Smashing Magazine, A List Apart, and .net magazine.
He runs the web development blog Broken Links (http://
broken-links.com/) and lives in London, England.

T
H

E
 M

O
D

E
R

N
 W

E
B

T
H

E
 M

O
D

E
R

N
 W

E
B

www.it-ebooks.info

http://www.it-ebooks.info/

AdvAnce PrAise for The Modern Web

“This is a useful book, and it’s an important book. If you follow Peter
Gasston’s advice, then test your sites across all browsers and on a variety
of devices, you’ll impress your bosses and please your users. You’ll also be
making the Web better and keeping it open.”
—bruce lawson, author of introducing html5

“Peter Gasston has now done for the modern web platform what he already
did for CSS: write a consult-it-first compendium of information for web devel-
opers of practically any skill level.”
—stephen hay, author of responsive design workflow

“Peter Gasston strikes a great balance between producing fantastic real-world
code and staying right on top of the latest developments in web technology.
He has a considerable gift for explaining difficult technical topics in a lucid
and entertaining manner.”
—chris mills, developer relations manager, opera software and author of
 practical css3

PrAise for Peter GAsston’s The book of CSS3

“I can honestly say I will never need another book on this subject, and I doubt
anyone else will either. The Book of CSS3 covers it all and covers it well.”
—devon young, css3.info

“One of the best technology books I’ve read.”
—craig buckler, optimalworks web design

“This book deserves a place within easy reach of the developer’s keyboard
and is a must have for anyone looking to join the visual revolution that CSS3
is bringing to the Web.”
—c.w. grotophorst, choice magazine

“There are a lot of neat things that you can do in CSS3, and this book is a
great introduction to these features.”
—steven mandel, .net developer’s journal

“An easy-to-read, easy-to-implement handbook of the newest additions to the
Cascading Style Sheet specification.”
—mike riley, dr. dobb’s journal

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

T h e M o d e r n W e b
M u l t i - d e v i c e W e b

d e v e l o p m e n t w i t h h T M L 5 ,
C S S 3 , a n d J a v a S c r i p t

by Peter Gasston

San Francisco

www.it-ebooks.info

http://www.it-ebooks.info/

The Modern Web. Copyright © 2013 by Peter Gasston.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

17 16 15 14 13 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-487-4
ISBN-13: 978-1-59327-487-0

Publisher: William Pollock
Production Editor: Serena Yang
Cover Ilustration: Charlie Wylie
Developmental Editors: Keith Fancher and William Pollock
Technical Reviewer: David Storey
Copyeditor: LeeAnn Pickrell
Compositor: Susan Glinert Stevens
Proofreader: Ward Webber
Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.it-ebooks.info

http://www.it-ebooks.info/

For Dave, Jim, Morena, Nick, Rupert, Steve,
and all of the other organizers of the

London Web Standards group, who help to
keep the London scene active and gave me

my first opportunity in public speaking.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Peter Gasston has been a web developer for over 12 years in both
agency and corporate settings. He was one of the original contributors
to CSS3.info, the leading online destination for CSS3. Gasston is the
author of The Book of CSS3 (No Starch Press) and has been published in
Smashing Magazine, A List Apart, and .net magazine. He gives talks about
technologies at developer conferences and runs the web development
blog Broken Links (http://broken-links.com/). Gasston lives in London,
England.

About the Technical reviewer
David Storey is an HTML5 evangelist at Plain Concepts, a founding
member of the IE userAgents program, and a CSS Working Group
member. Prior to this, he was the developer advocate manager on a
top-secret skunk works project at Motorola. He also founded the devel-
oper relations team at Opera, product managed Opera Dragonfly, and
worked at CERN, home of the World Wide Web. His passion is keeping
the Web open for all.

www.it-ebooks.info

http://www.it-ebooks.info/

b r i e f C o n T e n T S

Acknowledgments . xv

Introduction . 1

Chapter 1: The Web Platform . 11

Chapter 2: Structure and Semantics . 21

Chapter 3: Device-Responsive CSS . 39

Chapter 4: New Approaches to CSS Layouts . 65

Chapter 5: Modern JavaScript . 89

Chapter 6: Device APIs . 107

Chapter 7: Images and Graphics . 125

Chapter 8: New Forms . 141

Chapter 9: Multimedia . 161

Chapter 10: Web Apps . 177

Chapter 11: The Future . 191

Appendix A: Browser Support as of March 2013 . 211

Appendix B: Further Reading . 217

Index . 227

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

C o n T e n T S i n d e T a i L

AcknoWledgMenTs xv

InTroducTIon 1
The Device Landscape . 2

Desktop/Laptop . 2
Mobile . 3
Tablet . 5
TV . 5
The Others . 6
The In Betweeners . 6

The Multi-screen World . 7
Context: What We Don’t Know . 7

Some Context Stereotypes . 8
“Fast” Is the Only Context That Matters . 8

What You’ll Learn . 9
Further Reading . 10

1
The Web PlATforM 11
A Quick Note About Terminology . 12
Who You Are and What You Need to Know . 12
Getting Our Terms Straight . 13
The Real HTML5 . 13

The HTML5 Template . 14
New Best Practices . 15

CSS3 and Beyond . 16
Vendor-Specific Prefixes . 17
CSS Frameworks and Preprocessors . 18

Browser Support . 18
Test and Test and Test Some More . 19
Summary . 20
Further Reading . 20

2
sTrucTure And seMAnTIcs 21
New Elements in HTML5 . 22

What’s the Point? . 23
The Downside of HTML5 Sectioning Elements . 24

WAI-ARIA . 26
The Importance of Semantic Markup . 28
Microformats . 29
RDFa . 30
Microdata . 31

The Microdata API . 32
Microdata, Microformats, and RDFa . 32

www.it-ebooks.info

http://www.it-ebooks.info/

x Contents in Detail

Schema .org . 33
Rich Snippets . 34

Data Attributes . 35
The Data Attributes API . 35
jQuery and Data Attributes . 36
Data Attributes in the Wild . 37

Web Components: The Future of Markup? . 37
Summary . 37
Further Reading . 38

3
devIce-resPonsIve css 39
Media Queries . 40

Media Features Based on Dimensions . 41
Combining and Negating Media Queries . 44
A Quick Digression: All About Pixels . 45
Screen Resolution Media Queries . 46
Device Adaptation . 48
Input Mechanism Media Features . 50
Further Media Features . 51

Media Queries in JavaScript . 51
Adaptive vs . Responsive Web Design . 53

The box-sizing Property . 54
Dynamic Calculations on Length Values . 55

Viewport-Relative Length Units . 56
Root-Relative Units . 56
Mobile First and Content Breakpoints . 57

Responsive Design and Replaced Objects . 59
The Image Problem . 62
The HTML5 Responsive Images Solution . 62

Summary . 63
Further Reading . 63

4
neW APProAches To css lAyouTs 65
Multi-columns . 66

Gaps and Rules . 67
Spans and Breaks . 68

Flexbox . 70
Declaring the Flexbox Model . 70
Changing the Content Order . 71
Alignment Inside the Container . 73
Adding Some Flexibility . 75
Wrap and Flow . 76

Grid Layout . 78
Declaring and Defining the Grid . 79
Repeating Grid Lines . 81
Placing Items on the Grid . 81
Alignment and Stacking . 83
The September 2012 Grid Layout Syntax . 84

www.it-ebooks.info

http://www.it-ebooks.info/

Contents in Detail xi

On the Grid Layout Terminology . 85
Grid Template . 85

The Further Future . 86
Summary . 86
Further Reading . 87

5
Modern JAvAscrIPT 89
New in JavaScript . 90

The async and defer Attributes . 90
The addEventListener Method . 91
The DOMContentLoaded Event . 94
Input Events . 94
CSS Selectors in JavaScript . 96
The getElementsByClassName() Method . 97
Interacting with Classes . 97

JavaScript Libraries . 98
jQuery . 98
YepNope . 100
Modernizr . 101
Mustache . 102

Polyfills and Shims . 104
Testing and Debugging . 105
Summary . 106
Further Reading . 106

6
devIce APIs 107
Geolocation . 108
Orientation . 110
Fullscreen . 111
Vibration . 113
Battery Status . 114
Network Information . 115
Camera and Microphone . 116
Web Storage . 117
Drag and Drop . 119
Interacting with Files . 121
Mozilla’s Firefox OS and WebAPIs . 123
PhoneGap and Native Wrappers . 123
Summary . 124
Further Reading . 124

7
IMAges And grAPhIcs 125
Comparing Vectors and Bitmaps . 126
Scalable Vector Graphics . 126

Anatomy of an SVG Image . 127
Linked SVG Files . 128

www.it-ebooks.info

http://www.it-ebooks.info/

xii Contents in Detail

Embedded SVG . 130
SVG Filters . 132
The Convergence of SVG and CSS . 134
A Drawback of SVG . 135

The canvas Element . 135
Image Manipulation . 137
WebGL . 138

When to Choose SVG or Canvas . 138
Summary . 139
Further Reading . 139

8
neW forMs 141
New Input Types . 142
New Attributes . 144

autofocus . 144
placeholder . 144
autocomplete . 145
spellcheck . 145
multiple . 145
form . 146

Datalists . 146
On-Screen Controls and Widgets . 147

Numbers . 147
Dates . 148
Color . 150

Displaying Information to the User . 151
progress . 151
meter . 152
output . 153

Client-side Form Validation . 154
The Constraint Validation API . 156
Forms and CSS . 159
Summary . 160
Further Reading . 160

9
MulTIMedIA 161
The Media Elements . 162

Extra Attributes for the video Element . 163
Multiple Source Files . 164
Fallbacks . 165
Subtitles and Captions . 167
Encoding . 168

Media Fragments . 168
The Media API . 169

Network and Ready States . 172
Extra Properties for Audio and Video . 173

Media Events . 173

www.it-ebooks.info

http://www.it-ebooks.info/

Contents in Detail xiii

Advanced Media Interaction . 174
Web Audio API . 174
WebRTC . 174

Summary . 175
Further Reading . 175

10
Web APPs 177
Web Apps . 178

Hosted vs . Packaged Apps . 178
Manifest Files . 179
W3C Widgets . 181

Hybrid Apps . 181
PhoneGap . 182
Titanium . 184

TV Apps . 184
Webinos . 185
Application Cache . 185

Contents of the AppCache File . 186
The Caching Sequence . 186
The AppCache API . 187

Summary . 188
Further Reading . 188

11
The fuTure 191
Web Components . 192

Templates . 192
Decorators . 194
Custom Elements . 197
The Shadow DOM . 198
Putting It All Together . 200

The Future of CSS . 200
Regions . 200
Exclusions . 202
Even Further Future Layouts . 205
Feature Queries . 207
Cascading Variables . 208

Summary . 209
Further Reading . 209

A
broWser suPPorT As of MArch 2013 211
The Browsers in Question . 212
Enabling Experimental Features . 212
Chapter 1: The Web Platform . 213
Chapter 2: Structure and Semantics . 213
Chapter 3: Device-Responsive CSS . 213
Chapter 4: New Approaches to CSS Layouts . 214

www.it-ebooks.info

http://www.it-ebooks.info/

xiv Contents in Detail

Chapter 5: Modern JavaScript . 214
Chapter 6: Device APIs . 215
Chapter 7: Images and Graphics . 215
Chapter 8: New Forms . 215
Chapter 9: Multimedia . 216
Chapter 10: Web Apps . 216
Chapter 11: The Future . 216

b
furTher reAdIng 217
Introduction . 217
Chapter 1: The Web Platform . 218
Chapter 2: Structure and Semantics . 219
Chapter 3: Device-Responsive CSS . 220
Chapter 4: New Approaches to CSS Layouts . 221
Chapter 5: Modern JavaScript . 221
Chapter 6: Device APIs . 222
Chapter 7: Images and Graphics . 223
Chapter 8: New Forms . 223
Chapter 9: Multimedia . 224
Chapter 10: Web Apps . 225
Chapter 11: The Future . 225

Index 227

www.it-ebooks.info

http://www.it-ebooks.info/

a C k n o W L e d g M e n T S

Huge thanks are due to David Storey, the technical reviewer for this book;
his deep knowledge of the field meant his feedback was invaluable to me.
Although he corrected and guided me many times, if there are any errors
in this book they’re entirely my responsibility.

Keith Fancher, Serena Yang, Bill Pollock, and the rest of the No Starch
Press team provided fantastic support and guidance throughout the writing
of this book. Their collective contribution is beyond measure.

Dimitri Glazkov helpfully answered a few questions on web components,
and Bruce Lawson gave extra feedback on the new HTML5 elements in
Chapter 2. His work as well as that of his fellow HTML5 Doctors was a con-
stant reference during the writing of this book.

Although I’ve never met him, I’d like to thank David Walsh for main-
taining an excellent website that I have used a lot.

Stephen Hay and Chris Mills have been generally useful in helping me
to consolidate ideas, as well as incredibly nice people to know.

Great thanks to my friends and occasional colleagues Giles McCartney,
Richard Locke, and Tom Shirley. Thanks also to all my other colleagues at
Preloaded, Poke, Top10, Believe.in, and rehabstudio.

As always the biggest thanks must go to my wife, Ana, for her patience
and support during the time I spent writing this book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

i n T r o d u C T i o n

We are in a time of unprecedented inno-
vation on the Web. Not too long ago, one

company, Microsoft, dominated the web
landscape; in 2003, Internet Explorer was

used on some 95 percent of computers worldwide.
This domination brought the advantage of a stable
market for developers, but there was also a serious drawback: Microsoft
chose to end nonessential work on IE, and innovation on the Web stag-
nated—a consequence of a lack of competition and a closed environment.

Things could not be more different now. There are some four or five
key browser vendors, about the same number of major operating systems,
and more parties are getting involved all the time. Adobe has switched its
focus from Flash and apps to the open web, and technology companies like
Samsung and Nintendo are joining key players such as Google, Apple, and
Microsoft in shaping the future of the Web and the way we build for it.

www.it-ebooks.info

http://www.it-ebooks.info/

2 Introduction

And the way we access the Web has changed enormously too—think
devices. No longer are we limited to browsing the Web with a desktop or
laptop. So many categories of devices exist now—including smartphones,
tablets, and games consoles—that I’m running out of fingers to count
them on.

This book is about front-end web development in this new web-
everywhere era. It’s about learning methods to make first-class websites,
apps, or anything built on open web technologies, with the multi-device
world aforethought. This is not a book about how to make mobile websites
or smart TV apps; it’s about learning the latest developments in current
and near-future web technologies so you’ll be better able to build sites
 capable of offering the best experience everywhere.

I’ll return to what you’ll learn from this book in more detail at the end
of the introduction, but first I want to talk about the bewildering array of
today’s web-enabled devices.

The device landscape
The year 2008 was a landmark year and not only because of the theatrical
release of Indiana Jones and the Kingdom of the Crystal Skull, which intro-
duced the phrase “nuking the fridge” into our vernacular. This was the
year that saw the number of Internet-connected devices exceed the num-
ber of people using them. This super-connectivity between devices is com-
monly known as the Internet of Things (IoT), and this book is aimed at an
already substantial and fast-growing subset of those things, namely things
with web browsers.

The range of web-enabled devices is enormous and getting broader by
the day. As I write this, I’m the owner of the following devices that have a
web browser: a desktop, a laptop, a tablet, a smartphone, an ebook reader,
and a games console. I suspect that’s not an uncommon scenario to more
affluent members of society; many people could add a smart TV and a por-
table games console to that list.

Of course, with this incredible range of web-enabled devices comes
incredible opportunity for web developers, and this book is here to help
you make the most of that. But first, let’s look at some of the core device
 categories and define some key terms so you’ll better understand what
you’re dealing with.

Desktop/Laptop
The Web as we’ve known it until recently has primarily targeted the larger
screens and more powerful processors of desktop or laptop computers
(shorthand: desktops), where the operator is usually seated and using a
fast Ethernet or Wi-Fi broadband connection. This mode is still the default
for people at work in offices, so many business-to-business (B2B) sites are built
to suit this configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 3

But desktop computer use is on the wane as many people nowadays,
especially home users, tend toward mobile or tablet devices (which I’ll
come to shortly). In the last quarter of 2012, global PC shipments were
down almost 5 percent from the previous year. That said, research shows
that people still tend to use desktops when performing tasks that involve
significant amounts of text, multitasking across different tabs of a browser,
or using programs that require close control of the content, such as image
editing. Desktops are also used when security is a major concern, such as
for Internet banking.

But even within this venerable and mostly stable group variation
abounds. The 1024×768 screen resolution is slowly dying away but still
prominent, while newer versions of Apple’s MacBook Pro sport a resolu-
tion of 2880×1800. Sites optimized for the former will look quite small
and be somewhat lost on the latter.

The desktop browser world includes five major players: Chrome, Safari,
and Opera, which share the WebKit engine (Opera had its own engine,
Presto, which is now being phased out); Firefox; and Internet Explorer (ver-
sion 9 can be considered semimodern and 10 fully modern). Thankfully
they all tend to implement features in a standard way, and they all have a
frequent or semifrequent update cycle (or are moving toward it), so users
tend to get new features fairly quickly. Of course, a sizable percentage of
users are still running older, less capable browsers, so you should always
build with that in mind. (Much of the innovation in web standards comes
to desktop browsers first because they’re the ones that developers tend to
use on a daily basis. Therefore much of this book is written with desktop
 browsers in mind, although what you’ll learn can be applied anywhere.)

Mobile
When I say mobile, I generally mean phones. The range is wide: from older,
cheaper hardware running rudimentary web browsers to mid-range fea-
ture phones with browsers optimized for speed over power to high-powered
expensive smartphones with browsers on par with those on your main com-
puter, as well as a series of apps that often use an embedded browser to view
content.

In many countries, a majority of Internet users are on a mobile device;
in India, for example, some 55 percent of web visits are made on mobile
devices, and in Egypt nearly 70 percent of people rely on phones as their
sole access to the Web. Worldwide estimates are that the number of mobile
web users will exceed that of desktop computer users sometime between
2014 and 2015.

Across the developing world, the dominant mobile device is the feature
phone, which has functions beyond basic phoning and texting but often lacks
full web access. The rise of low-cost and secondhand smartphone sales, how-
ever, is already changing that market drastically. Within the next few years,
we can expect to see smartphones dominate the mobile landscape. In 2011,

www.it-ebooks.info

http://www.it-ebooks.info/

4 Introduction

smartphone sales were estimated to account for 27 percent of the global
market; at the end of 2012, estimates were that 1 billion smartphones were
in use, with that number predicted to double by 2015.

The sheer variety of mobiles and mobile browsers in the global mar-
ket means that I’m selective about the coverage in this book, so for future-
proofing I target phones with fully capable web browsers, that is, features
on par with their desktop equivalents.

The WebKit engine dominates the smartphone browser market because
it’s used on iPhone, Android, Blackberry, and more, powering many differ-
ent browsers. Each OS uses a slightly different version of WebKit, but gen-
eral interoperability is good.

Windows Phone OS from version 7.5 and up uses a mostly desktop-
equivalent Internet Explorer as its browser; older models have IE9, and
more recent models, IE10. Firefox is also available as an option for Android,
and Firefox OS, a full operating system based around the browser, is set to
launch in 2013. That launch may well impact the market in the long term.

Opera has a significant share in the global mobile browser market thanks
to Opera Mini, a proxy browser that compresses requested pages and returns
the data as a kind of image with very limited interactivity. Opera Mini is
lightweight and fast, which makes it popular in countries with limited Inter-
net connectivity, but its lack of full interactivity means I won’t give it much
attention. As I write this, Opera has announced that it’ll be releasing new
mobile browsers based on WebKit, although no details are available.

Today’s smartphones, although getting more powerful all the time,
tend to have less available memory and storage, and lower potential con-
nection speeds, than desktop or laptop computers. On the surface, this
would seem to make them the poor cousin of web-enabled devices, but
as Jonathan Stark says in “The 10 Principles of Mobile Interface Design”:

Smartphones are actually more powerful than desktops in many
ways. They are highly personal, always on, always with us, usually
connected, and directly addressable. Plus, they are crawling with
powerful sensors that can detect location, movement, accelera-
tion, orientation, proximity, environmental conditions, and more.

Obviously the advantage of mobile is just that: its mobility—the abil-
ity to find things around you, get directions, and look up information fast
when out of the house or office. But increasingly, mobile devices are being
used at home while watching TV or on the morning commute or when
bored standing in line. Mobile is really less about being on the move and
more about always being available.

The mobile space is changing faster than any sector of the market, as
many users change devices on 12- to 18-month update cycles and hundreds
(if not thousands) of new models are introduced every year.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 5

Tablet
Tablet computers have been around for years, but it wasn’t until Apple
came along with the iPad in 2010 that they became more of a leisure item
than a desktop accessory. Many other devices have followed the iPad, with
Android-based tablets doing especially well in the mid-sized 7" range and
Microsoft pushing forward with the heavily tablet-focused Windows 8. From
a market that was negligible at best in 2009, estimates are some 390 million
tablets will be in use worldwide by 2015. That’s an incredible figure, and the
growth is exponential.

Their larger size and reliance on Wi-Fi (in many cases) makes tablets
portable rather than truly mobile; they exist in a space more akin to a lap-
top than a mobile device. Most people use them at home, and although they
are carried around, they’re usually taken out and used only when the user
is stationary, rather than walking down the street. That said, it’s not uncom-
mon to see them used as somewhat awkward and ungainly cameras in pub-
lic places!

Like smartphones, tablets are tactile, relying on touch input in most
cases (although some also accept stylus input). Research shows they tend to
be used for entertainment and browsing when time is less of an issue. The
core browsers on tablets are essentially the same as those on mobile devices.

TV
The TV is still the most-used screen in the home, though mostly for passive
viewing rather than interactivity. That’s changing as the new breed of web
(or smart) TVs and media boxes begin to get a foot in the door. Although
global figures are hard to come by, predictions are that there will be
100 million web-enabled TVs in Europe and North America by 2016.

Although many web TVs use applications rather than websites, they’re
often built using web technologies and sometimes contain an embedded
browser view. After all, if you’re making a Twitter app, you want your users
to be able to open links.

The biggest drawback with web TV is that navigating with a TV remote
is a horrible experience, made worse by some of the multibutton monstrosi-
ties that have been built to provide the level of interactivity required for Inter-
net use—notably, a keyboard. Some manufacturers are making gesture- and
voice-controlled TVs or remote controls that incorporate a trackpad, but the
best solution seems to be to pair a mobile or tablet with the TV and use that
as an interactive control.

Another obstacle to web browsing on the TV is that the television is
inherently a communal device, viewed by many people at the same time—
an experience that is fundamentally opposite to the personal Internet expe-
rience. Would you like to have your Facebook account broadcast on a big
screen for everyone to see? Probably not.

www.it-ebooks.info

http://www.it-ebooks.info/

6 Introduction

The emerging common behavior is for web TVs to be used for video
and interactive services, with a real-time social aspect happening concur-
rently on the user’s mobile or tablet. Recent research shows that 77 percent
of people use another screen while watching (if that’s the right word) TV,
and of that figure, only 5 percent or so are performing an activity that’s rel-
evant or complementary to what’s on screen.

The Others
These four broad categories—desktop/laptop, mobile, tablet, and TV—
cover the majority of the web-enabled device market, but they’re by no
means exclusive. Many other devices have web browsers, even if they aren’t
always used with great frequency.

Each of the current generation of home games consoles has a browser:
The PlayStation 3 uses the WebKit-based NetFront, Microsoft’s Xbox 360 has
Internet Explorer 9, and Nintendo’s Wii U has a custom build of WebKit.
Likewise, portable games consoles have browsers: The PlayStation Vita
uses NetFront, as do newer versions of the Nintendo 3DS (older versions
use Opera). Bear in mind that each uses a slightly different control system.
(For more on the topic, see Anna Debenham’s amazing work in the field as
listed in “Further Reading” on page 10.)

And let’s not forget ebook readers, such as Amazon’s Kindle, the Kobo,
Barnes & Noble’s Nook, and a series from Sony. (When I use the term ebook
readers, I’m referring specifically to “e-ink” readers, as each company also
has a full-color screen version that is more like a tablet.) The ebook browsers
tend to be WebKit based, and their challenges come from low-powered pro-
cessors, little memory, and very slow refresh rates. They wouldn’t be the
first-choice browser of many, but as ebooks become more interactive, they
may become more popular.

The In Betweeners
The iPhone 4 has a screen size of 3.5" diagonally, and the iPhone 5, 4".
Samsung’s Galaxy S III has a diagonal length of 4.8"; LG’s Optimus Vu, 5";
and Samsung’s Galaxy Note II, 5.5". Google’s Nexus 7 is 7" diagonally, and
Amazon’s Kindle Fire HD comes in 7" and 8.9" formats. The iPad mini is
7.9" diagonally and the iPad, 9.7".

In other words, the great variety of screen sizes makes the distinction
between mobile and tablet quite hard to pin down. The only criteria I can
think of to separate them are based on whether they have native telecom
ability, can fit comfortably in a pocket, and can be used comfortably with
one or two hands.

In fact, computing is experiencing a general convergence. Microsoft’s
Surface is a tablet with an optional keyboard in the cover. When keyboard
and tablet are attached, the Surface looks and behaves like a laptop. The
Ubuntu Phone runs Android, except that when you dock it to a screen, it

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 7

runs a full version of the Linux desktop. The PadFone by Asus is a phone
that turns into a tablet when docked with a larger touchscreen. Your TV
becomes a media center when you plug Apple TV or Roku into it.

This change is set to outdate all of our existing terminology. In the
foreseeable future, the word tablet will be as meaningful as the floppy disk
icon currently used to mean save in many software applications. One day,
everything will be screens.

The Multi-screen World
The idea of a user being a “mobile user” or “tablet user” is somewhat mis-
guided because people are much more likely to use many devices, often
at the same time. Research conducted for Google in 2012 indicated that
81 percent of participants used their smartphone while watching TV, and
66 percent had it available while using a desktop. This use of multiple
devices concurrently is known as simultaneous screening.

Meanwhile, 90 percent of participants started a task on one device
and finished it on another; for example, they browsed shopping websites
on a smartphone and then moved to a laptop at the time of purchase. This
movement between consecutive devices depending on the task being per-
formed is labeled subsequent screening.

In other words, visitors to your website will visit from two or three dif-
ferent devices, and although they’ll have slightly different aims each time,
they’ll still want access to the same information.

context: What We don’t know
The most important thing to bear in mind is how much we don’t know
about the people using our sites. We don’t know where they are—I don’t
mean geographically, as we can use GPS to locate them. I mean whether
they’re at home, at work, on the bus, and so on. In essence, we have no
idea of the context in which someone is using our site.

The common presumption is that people using mobile are on the move
and in a hurry, often using low-bandwidth 3G connections, but that’s not
always the case: Mobile is often used at home with a good fast Wi-Fi connec-
tion. But even the connection doesn’t tell the whole story; the signal may
be poor or the bandwidth reduced because of congestion in the neighbor-
hood. In fact, the 3G (or 4G in many countries) networks might actually
provide a much better connection in many cases.

We also presume that mobiles are less powerful than desktops, but even
that may not be true for much longer. Twin- or even quad-core phones with
fast processors are making their way to the market, and within a year or
two, who knows how much power they’ll have. And tablet/laptop hybrids
like many Windows 8 devices are now more capable than laptops just a few
years old.

www.it-ebooks.info

http://www.it-ebooks.info/

8 Introduction

There’s also the issue of size. The presumption is that for a large-screen
device like a TV, viewers want a richer graphical environment, but a large
screen doesn’t equal a powerful processor or a fast connection. Many web-
enabled TVs have processors no more powerful than a smartphone, and
the connection speed is open to the same vagaries as any other device. And
with size comes the question of portability. The more portable the device,
the less certain we can be of the context in which it’s being used.

Really, the cardinal rule is this: We cannot make presumptions. And
having said that, I’m going to break my own rule.

Some Context Stereotypes
To avoid repetition in this book, I rely on a few shorthand contexts based
on common scenarios. These won’t necessarily be the most common sce-
narios, but ones that I think are common enough to serve a useful purpose.
One example: Mobile users don’t have a super-fast Internet connection.
Often mobile users are using their devices from home with a mega-fast
fiber-optic connection broadcast over clear Wi-Fi from 2 feet away, but the
opposite is often just as true: They’re away from home and relying on a
very weak 3G signal (as happens to me too often). Many smartphones are
built with scenarios like this in mind; they limit the number of connections
that can be made at any time in order to not gobble precious data from the
user’s limited tariff.

Likewise, a user with a desktop computer will likely have a direct broad-
band connection, providing fast data transfer rates. That’s not always true,
of course—many people in rural areas have extremely low broadband speeds
or still use dial-up—but the first scenario is common enough that I can use
it as a shorthand.

I use shorthands like these throughout the book simply to avoid con-
stant clarification and repetition, but I can’t drum home enough the idea
that these presumptions can’t, and shouldn’t, be foremost in your mind
when building and planning websites or applications.

“Fast” Is the Only Context That Matters
You have a challenge. You don’t know who your users are, where they are,
what they are doing, or which device they are doing it with. You can find out
some (although not all) of that information, but their full context is com-
pletely unknowable and varies for each individual. The only thing you can
reasonably know for certain is that either they want access to what you’re
offering or they want to find out it’s not what they want. Either way, they
want the answer quickly.

Performance is the only criterion that matters. Whether users are on a
smartphone during rush hour and looking for information about the next
train home or browsing through a shopping site while curled up on the sofa
at home, they have a task that they want to complete as soon as possible, and
completing this task using the nearest device will make them feel more effi-
cient (this is known as found time).

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 9

Your site needs to be fast—and feel fast—regardless of the device it’s
being displayed on. And fast means not only technical performance (which
is incredibly important) but also the responsiveness of the interface and
how easily users can navigate the site and find what they need to complete
the task that brought them to you in the first place.

What you’ll learn
I’ll be up-front and start by telling you what I won’t be teaching in this book:
designing to the strengths of each platform. I can’t do that because I can’t
teach what I don’t know. I became a developer rather than a designer for
a reason, and that’s because when I use Photoshop, the result looks as if I
were using the mouse while wearing boxing gloves.

What I will teach is modern coding methods and techniques that you
can use to build websites that work across multiple devices or that are tai-
lored to the single device class you’re targeting. (The technologies them-
selves are all explained in Chapter 1, so I won’t go into detail here.)

As you read this book, keep in mind these two very important points:

•	 The pool of technologies is so vast that I can’t cover it all. I’ll teach you
what I consider to be the core techniques and technologies that you
need to know to build web projects across the range of devices.

•	 Not everything in this book will end up having widespread adoption—
at least not in the form I show in this book. The Web is constantly
evolv ing, and book publishing means taking just a single snapshot of
a moment. Some things will change; some will wither and be removed.
I’ve tried to mitigate this by covering only technologies that are based
on open standards rather than vendor-specific ones and that already
have some level of implementation in browsers.

As a web developer, you should do this: Stay informed. Keep up-to-date
with the developments in web standards, be curious, be playful, keep on top
of it all. You’re lucky enough to work in an industry based on sharing knowl-
edge, so follow some of the people and websites I mention in this book, find
your own sources, get on Twitter, go to local web development community
meetups. Stay involved and be active. There’s never been a more exciting
time to work in web development, but you’ll need to put in an extra shift to
really take advantage of it.

Above all, think of what you build in the greater scheme of things. If
you’re building a website, don’t think of “building a site for web and mobile,”
think of building a site that works everywhere. Think of how people will use
it, what they’ll want from it, and what you as a developer can do to aid them
in achieving their goals—not just now but in the future. We’ve seen such a
major transformation of the Web in the past five years—who can say where
it will be another five years from now.

www.it-ebooks.info

http://www.it-ebooks.info/

10 Introduction

further reading
Statistics used in this chapter were taken from many sources, nota-
bly Vision Mobile’s “The Mobile Industry in Numbers” at http://www
.visionmobile.com/blog/2012/10/infographic-the-mobile-industry-in-numbers/
and Cisco’s “The Internet of Things” at http://blogs.cisco.com/news/
the-internet-of-things-infographic/.

You can find a good primer on the IoT in The Next Web’s article
“Why 2013 Will Be the Year of the Internet of Things”: http://thenextweb
.com/insider/2012/12/09/the-future-of-the-internet-of-things/.

David Storey wrote a great post about the non-smartphone mobile web,
“See your site like the rest of the world does. On the Nokia X2-01,” at http://
generatedcontent.org/post/31441135779/mobileweb-row/.

The best article I’ve read on designing for mobile devices, and from
which I quote in this chapter, is Jonathan Stark’s “The 10 Principles
of Mobile Interface Design”: http://www.netmagazine.com/features/
10-principles-mobile-interface-design/. Jason Grigsby’s excellent article
“Responsive Design for Apps” is a good primer for designing for mul-
tiple screen dimensions and capabilities: http://blog.cloudfour.com/
responsive-design-for-apps-part-1/.

UX Magazine’s article by Brennen Brown, “Five Lessons from a Year of
Tablet UX Research,” has some great findings on how people use tablets:
http://uxmag.com/articles/five-lessons-from-a-year-of-tablet-ux-research/.

A good starting point for Anna Debenham’s research on games con-
sole browsers is an A List Apart article “Testing Websites in Game Console
Browsers”: http://www.alistapart.com/articles/testing-websites-in-game-con
sole-browsers/.

Jason Grigsby (again) gave an excellent talk, “The Immobile Web,”
on developing for TV. The video is at http://vimeo.com/44444464/, and the
accompanying slides are at http://www.slideshare.net/grigs/the-immobile-web/.

For the full research on multi-device usage, see Google’s blog post
“Navigating the New Multi-screen World” at http://googlemobileads.blogspot
.co.uk/2012/08/navigating-new-multi-screen-world.html.

Making your websites Future Friendly is always good: See http://
futurefriend.ly/.

www.it-ebooks.info

http://www.it-ebooks.info/

1
T h e W e b P L a T f o r M

In this chapter, I’m going to talk about
the web technologies that you’ll learn in

this book, the knowledge you’ll need to get
the most from reading it, and the demands

and requirements of working on the multi-device Web.
This chapter is about making sure we’re on the same
page, figuratively speaking—I know we’re literally on the same page because
you’re reading this now—before we get into the really technical things in
the next chapters.

If you’re keen to get on with the learning you’re probably considering
skipping straight to Chapter 2, but I urge you not to as Chapter 1 contains
some quite interesting and useful background information, and the less
technical subject matter allows me to show off the best examples of my won-
derful sense of humor.

www.it-ebooks.info

http://www.it-ebooks.info/

12 Chapter 1

A Quick note About Terminology
Throughout the book, I refer quite often to building websites or sites, but
this terminology is just convenient shorthand to avoid repetition. The fea-
tures you’ll learn from this book are relevant to websites, web applications,
packaged HTML hybrid applications—in short, anything that can use
HTML, CSS, and JavaScript. But that’s a mouthful, so I mostly just say
“websites,” except when I need to be more specific.

I also use “browsers” and “user agents” interchangeably when what I mean
is any instance of software that renders web pages or applications. Again, I’m
just trying to avoid repetition. Once more, I’m trying to avoid repetition.

Who you Are and What you need to know
Before I begin, I’ll explain some of the presumptions I’m making about
you and tell you what you need to know to get the most out of this book.
First, let’s talk about you. Whether you’re a professional, you’d like to be,
or you’re just someone who enjoys playing around with the Web, you have a
working knowledge of HTML, CSS, and JavaScript—not to any deep, inti-
mate level, but enough that you don’t need me to teach you what they are
or how to write them.

Perhaps you learned to build websites a while ago and need to bring
your skills up to date; maybe you’re learning web development at school
and want extra lessons; or perhaps you’re a working developer but don’t
get the opportunity to keep up with developments in coding for the Web.
Whether any of those descriptions fit, I assume you want to get involved in
building websites in a modern way, which work across multiple devices and
are sympathetic to the dimensions and capabilities of each device—that’s
doubtless why you picked up a book with this title.

This book builds on your knowledge of web development. It’s not a
beginner’s guide, but it’s not an advanced book either. Rather, this book
is a snapshot of current, new, and near-future features in HTML, CSS,
JavaScript, and related technologies, with a bias toward those that are best
for building sites in the multi-device world.

As well as that basic knowledge, you need to know your way around the
developer tools in your browser, although not in any power-user kind of way.
In some of the JavaScript examples, I log results into a tool’s developer con-
sole; this is a standardized method of working and is the same if you use the
native tools in Chrome, Firefox, IE9+, Opera, Safari, or third-party tools
like Firebug. I might, for example, use a line of code like this:

console.log('Hello World');

And the result will be shown in the console; Figure 1-1 shows how this
is displayed in Firebug. As I said, I won’t use the console or developer tools
much, but if you don’t know how to use them, you should really take the
time to learn now.

www.it-ebooks.info

http://www.it-ebooks.info/

The Web Platform 13

Figure 1-1: A Hello World message logged in the console
in Firebug

If you’re still reading this, either you have all the knowledge required to
proceed, or you’re getting ready to try to bluff your way through. Regardless,
let’s move on to talk about technology.

getting our Terms straight
There’s some confusion over what HTML5 actually is. There’s what the
general public (and, for many of us, our clients) believe, and what it actu-
ally is. HTML5 is not a brand new platform that we use to build websites;
it’s not a rich multimedia environment; it’s not a thing you enable to make
your websites work across multiple devices. HTML5 is basically an attempt
to evolve the Web to meet the demands of the way we use it today, which
has mutated dramatically from its earliest iteration as a simple network of
linked documents.

To the public at large, HTML5 has become a shorthand term for a
series of related and complementary technologies, including CSS3, SVG,
JavaScript APIs, and more. Although some developers are happy to use this
broader meaning, I don’t really like this conflation of all the technologies,
so I’m happier with calling HTML5 the web platform. I actually prefer Bruce
Lawson’s proposed term, New Exciting Web Technologies (NEWT), which is
both a cool acronym and has a cute logo, but I have to admit that I’ve lost
this battle, so the web platform it is.

The web platform is vast. To see how vast, take a look at http://platform
.html5.org/, which lists all of the technologies that are considered part of
the platform; the list is really quite impressively long and contains far more
than I could ever hope to cover in one book.

Instead, I’ll concentrate on the core, the technologies I feel are suf-
ficient and useful for authoring websites that work across multiple devices:
HTML5, CSS3, SVG, Canvas, and some device APIs. I’ll explain each of
these as I get to them throughout the course of the book, but first I want to
clarify in more detail what is meant by HTML5 and CSS3.

The real hTMl5
HTML5 is an iteration of HTML4.01 with some new features, a few depre-
cated or removed features, and some modified behaviors of existing features.
Its aim is to standardize the many common hacks and design patterns that
developers have used throughout the years and to expand in order to meet
the demands of the modern Web, which is as much (if not more) about
applications as it is about documents; indeed, the original proposal for
what became HTML5 was called Web Applications 1.0.

www.it-ebooks.info

http://www.it-ebooks.info/

14 Chapter 1

New features in HTML5 include ways to structure documents for pro-
viding meaning and accessibility; I cover this in Chapter 2. HTML5 also
has a whole range of new form functionality and UI controls that make it
easier to build applications, which we’ll look at in Chapter 8. And HTML5
includes what many people still associate with it—native (without plug-ins)
video, which is covered in Chapter 9.

Two main groups are working on HTML5, and their roles and responsi-
bilities are broadly this: The WHATWG (you don’t need to know what that
acronym means), a consortium of browser makers and “interested parties,”
through the main spec editor Ian Hickson, creates a “living spec” of HTML—
basically a versionless specification that constantly incorporates new features
and updates existing ones; and the W3C (World Wide Web Consortium), the
Web’s standards body, takes snapshots of this spec to create numbered ver-
sions, ensuring compatibility of implementation by the browser vendors.

The situation is, in fact, a bit more complex than that and plenty of
political wrangling is going on, but that’s of interest only to standards wonks
and shouldn’t make any practical difference to you.

The W3C has proposed, although not confirmed as I write this, that
HTML5 (the W3C snapshot) be brought to Recommendation status—that
is, “done”—by 2014, with HTML5.1 to follow in 2016. HTML5 would also
be broken into separate modules rather than a single monolithic spec, so
work can progress on different aspects without delaying the whole. These
dates don’t really matter to you, however; all you need to know is when
HTML5 is in browsers and ready to use.

The HTML5 Template
As someone with basic working knowledge of HTML, you’re familiar with
fundamental page markup. But things have changed a little bit in HTML5—
not much, but enough to mention. The following code block shows the basic
template that I’ll use for all of the examples in this book (you can also see
this in the example file template.html):

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
<title></title>
</head>
<body></body>
</html>

Most of it should be familiar to you, but I will discuss two points of
interest. First is the Doctype. This is a remnant from the days when you had
to tell the browser which type of document you were writing: strict HTML,
transitional HTML, XHTML1.1, and so on. In HTML5, that’s no longer
necessary—there is only one flavor of HTML—so the Doctype declaration
really isn’t needed any more. In theory, that is.

Modern browsers tend to have three rendering modes: quirks mode emu-
lates the nonstandard rendering of Internet Explorer 5, which is required

www.it-ebooks.info

http://www.it-ebooks.info/

The Web Platform 15

for compatibility with legacy pages on the Web; standards mode is for modern,
standards-compliant behavior; and almost standards mode is standards mode
with a few quirks.

To know which mode to use, the browser looks to the Doctype. You
always want to use standards mode, so the Doctype in HTML5 is the short-
est possible that triggers standards mode:

<!DOCTYPE html>

The second point of interest, and the only other change to the standard
HTML5 template, is the meta tag, which declares the range of Unicode
characters used to render the text on the page—UTF-8 is the default used
across the Web, so this is what you’ll use in most cases. The meta tag uses the
charset attribute:

<meta charset="utf-8">

That’s really it. If a client ever asks you to “make their website HTML5,”
you can update those two tags and charge them a fortune for it. (Please
don’t; that was just a joke.)

I could have included plenty of other options, which I’ve left out for the
sake of clarity and simplicity. The popular HTML5 Boilerplate website pro-
vides a comprehensive template, so look through the documentation to see
what the template does—but please keep in mind it should be a starting
point, not used verbatim.

New Best Practices
In addition to the changes to the core template, HTML5 has one or two
new best practices that you should consider implementing. HTML5 has
been written to take advantage of the many different ways developers write
code, so these shouldn’t be considered hard-and-fast rules, but in my opin-
ion, they’ll make your code easier to write and maintain.

The first best practice is that you are no longer required to use the
type attribute when calling the most common external resources. Using
HTML4.01 or XHTML, you had to declare a type for each link, script, or
style tag:

<link href="foo.css" rel="stylesheet" type="text/css">
<script src="foo.js" type="text/javascript"></script>

But when working on the Web, CSS and JavaScript are the de facto
default resource types used with these tags, so writing them out every time
is a little redundant. Therefore, you can now drop them, making your code
a little cleaner while still being understood perfectly well by the browser:

<link href="foo.css" rel="stylesheet">
<script src="foo.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

16 Chapter 1

The only time you need to use the tags is when you’re not using default
CSS or JavaScript; for example, some releases of Firefox have experimental
implementations of recent versions of JavaScript, and for safety’s sake they
require that you include a flag on the type attribute if you want to use it:

<script src="foo.js" type="application/javascript;version=1.8"></script>

HTML5 is also very forgiving of syntax. Whether your preference is
to use all lowercase characters, quote your attribute values, or close empty
elements, HTML5 is happy to parse and understand them. That being the
case, all of these are equal:

n o T e Attribute values require quotation marks when they have multiple values, such as a
list of class names, or if they contain certain special characters.

Some attributes, known as Boolean attributes, have only true or false val-
ues; their presence is presumed to mean true unless otherwise specified, so
you don’t need to supply a value—unless you’re using an XML-like syntax
where values are required, in which case you use the name of the attribute
itself. This means both of these are the same:

<input type="checkbox" checked>
<input type="checkbox" checked="checked">

My own preference is to use all lowercase, all quoted, but not to close
empty elements:

This is the style I use throughout the book, as I find it neater and easier
to work with, and the text editor I use has syntax highlighting, which makes
looking through the code nice and clear. You can use whichever system you
want, but be consistent to help with maintainability.

css3 and beyond
As HTML5 is to HTML4.01, so CSS3 is to CSS2.1: an evolutionary iteration
that standardizes some existing features that are implemented slightly differ-
ently across browsers, and introduces a whole new set of features to make CSS
fit for purpose in a world where web browsers can be embedded anywhere.

The first CSS3 features to make it into browsers were largely presenta-
tional and based on hacks that developers had been using for years: using
fonts from any source, rounded corners, and drop shadows on text and
boxes. Next to land were a range of new selectors that made document

www.it-ebooks.info

http://www.it-ebooks.info/

The Web Platform 17

traversal for styling much easier, and more dynamic effects such as two- and
three-dimensional transitions and transitional animations (you can read
more about these in The Book of CSS3, by this author, from this publisher).

But beyond the many glittery visual effects, the real revolution of CSS3
has come through media queries, a syntax that allows you to provide styles
to browsers based on their dimensions and capabilities, the first step toward
true multi-device styling. I cover media queries in Chapter 3, along with a
range of other CSS properties that are useful for building responsive and
adaptive websites.

The next big challenge for CSS to solve is the issue of layout—that is,
to enable layouts that are truly sympathetic to the capabilities of the user
agent viewing them. These include properties for dynamic user interfaces
and CSS-controlled grid systems, which you’ll read more about in Chapter 4.

CSS3 is not a single spec as CSS2.1 was, where everything is described
in the same document; it’s far too big and complex for that. Instead CSS3 is
modular—a series of shorter, more specific specs that can be implemented
by browsers in a modular way. As with HTML5, the idea of waiting until
CSS3 is “ready” before using it is pretty foolish, as some modules will be
ready and implemented long before others.

CSS modules are given level numbers to show how many iterations
they’ve been through; some are already at level 4, and they could well be
implemented before others that are at level 3. This doesn’t mean, however,
that one day we’ll have a CSS4; there won’t be. CSS3 is a shorthand term for
“everything more recent than CSS2.1,” and one day that distinction will be
dropped and everything will be just CSS.

Vendor-Specific Prefixes
When browsers implement features in an experimental or prestandard
way, they try to make them safe by using vendor-specific prefixes to avoid
compatibility problems with standardized property names. Consider, for
example, that a CSS Apes module proposes a new property called gorilla,
and both Firefox and WebKit implement it experimentally but slightly dif-
ferently. If both used the same property name, the effect would be different
in each browser; instead, they avoid those potential conflicts by using a
vendor prefix:

-moz-gorilla: foo;
-webkit-gorilla: foo;

In principle, the system is great, but in reality, things have gotten some-
what confused. Among other problems, some prefixed properties became
so widely used by developers that other browser makers felt the need to
implement their rivals’ vendor prefixes too, which is justifiable but kind of
makes the whole thing nonsensical.

Browser makers are trying to bring this system under control, but on
occasion using vendor-prefixed properties will be close to unavoidable. In
most cases, I use only unprefixed properties in my code examples and make
a note in Appendix A of where vendor prefixes need to be used.

www.it-ebooks.info

http://www.it-ebooks.info/

18 Chapter 1

CSS Frameworks and Preprocessors
Nowadays using a helping hand with CSS development is pretty de rigueur,
especially when working on large development teams and/or on large proj-
ects. Usually these helpers come in the form of frameworks or preprocessors
and quite often both.

A framework is a set of predefined CSS rules that you can use for rapid
development; they usually cover typography, forms, and, quite often, layout
patterns. Blueprint.css is one of the more venerable frameworks, used on
many well-known websites, but the popular current framework is Bootstrap
by Twitter, which offers many preformatted layout, typography, and form
options, a range of reusable components, and even JavaScript extensibility.

Preprocessors are programs that work on the server-side, offering exten-
sions and shorthand syntax in a CSS-like language that is transformed into
correctly formatted stylesheets at build time. These extensions include time-
saving features like variables and nested rules, and custom functions that
provide incredible power to the user. The two key rivals in the preprocessor
arena are LESS and Sass, with the latter being the most popular.

While both have their role in modern web development, I won’t discuss
or use either in this book, as what I’m teaching is the more fundamental
language that both depend on.

browser support
You should understand by now that the multi-device web is unknowably
vast and varied, that the range of browsers running on those devices is
immense, and that even within those browsers there is a variety of versions
and implementations (I hope you understand that, as most of the introduc-
tion was dedicated to trying to get that point across). That being the case,
some of the features in this book may well not be implemented or may be
implemented slightly differently.

Rather than covering the levels of implementation in the text, I treat
every new feature as if it’s fully implemented and make a note of real-world
implementation oddities and curiosities in Appendix A.

Also, cutting-edge standard proposals are subject to change, even
when experimental implementations have already shipped in some browsers
(the Grid Layout module featured in Chapter 4 was updated while I wrote
this book), so by the time you read this, some of the syntax in the book
may already be out-of-date. This is an unfortunate risk when working with
 evolving standards in dead tree publishing, but I try to mitigate it by noting
features that may be at risk of changing and by keeping a list of errata and
updates on the companion website, http://modernwebbook.com/.

You’ll probably want to follow a few online resources to learn about levels
of implementation, although most tend to be focused on desktop and mobile
browsers. Can I Use... shows levels of support for a wide range of technologies
in recent past, current, and future versions of popular browsers, whereas
HTML5 Please shows how safe it is in general to use cutting-edge features,
mostly CSS3 and JavaScript (which is why the name annoys me a little).

www.it-ebooks.info

http://www.it-ebooks.info/

The Web Platform 19

The HTML5 Test is a site that tells you how many features from the
HTML5 spec your browser supports, but also very usefully keeps records
of implementation levels across many different browsers and devices,
including TV and games console browsers, and also allows you to do side-
by-side comparisons of up to three different browsers. The site is limited
to only HTML5 support, however.

Test and Test and Test some More
With the device landscape the way it is, the only way to be sure that the
sites you build work across multiple devices is to test. Test at the start of the
project, test at the end, and test at every opportunity all the way through.
If you’re planning a multi-device project, factor in testing to take up to 40
to 50 percent of build time. Seriously.

You can’t find a substitute for testing on actual devices, so start build-
ing a library of as many devices as you can. If you work near other agencies,
consider pooling resources so you can get a broader range. In many cities,
open device labs are being assembled, with a range of devices donated by
local developers and companies that are available for anyone to use. Search
online for your nearest lab, or consider getting involved with creating one at
your company or place of work.

And don’t stick to only mobile and tablet testing; think about games con-
sole browsers if you’re targeting your sites at a younger audience (research
suggests that some one in four teens in the US use their games console
browser to go online) or TV devices if your sites are aimed at a leisure
market.

If you can’t get access to actual devices, some dedicated tools are avail-
able, and most (if not all) OS creators and/or device manufacturers have
free-to-download software development kits (SDKs) with device emulators.
In the mobile and tablet space, Android, Windows Phone, and Blackberry
all have SDKs, and doubtless many more besides. Apple’s Xcode, available
through the App Store, features an iOS Simulator that lets you switch
between device and OS versions for testing.

Once set up, many of these SDKs also allow you to connect physical
devices via USB to do debugging via a paired browser, but an easier way to
do this is with Opera’s Mobile Emulator; once opened and connected to
an Opera desktop version, you can use the developer tools on the desktop
to debug the page on the mobile. If you need to use WebKit—and as it’s the
dominant multi-device engine, why wouldn’t you?—software called weinre
lets you connect a version of Chrome or Safari on the desktop with Android,
iOS, or Blackberry emulators/simulators.

Adobe has a tool called Edge Inspect, which synchronizes the Chrome
browser with any device running the Edge Inspect app (currently available
on iOS and Android), allowing you to preview your site on many different
devices simultaneously and use the Web Inspector for remote debugging.

www.it-ebooks.info

http://www.it-ebooks.info/

20 Chapter 1

summary
This chapter provided you with all the information you need to get started
in modern web development. I disambiguated the common meaning of
HTML5 and introduced you to the web platform. You learned what HTML5
is useful for and how to start writing it, and you also had a brief introduc-
tion to CSS3.

The chapter’s key messages are in the latter parts: First, always keep up-
to-date about the levels of implementation of web platform features across
common browsers; and second, test, and then test, test, test some more, and
when you think you have no more testing to do, test again. Then once more
for good luck.

With all of that explained, let’s roll our sleeves up and get to work.

further reading
In case you missed it, the list of technologies that make the web platform
is at http://platform.html5.org/. Bruce Lawson proposed NEWT on his blog:
http://www.brucelawson.co.uk/2010/meet-newt-new-exciting-web-technologies/.

The W3C’s HTML5 spec is at http://www.w3.org/TR/html5/, and the
WHATWG’s living spec is at http://whatwg.org/html. More usefully, they also
have an Edition for Web Developers, which leaves out some of the more arcane
language and is, therefore, more readable: http://developers.whatwg.org/.

The complete HTML5 Boilerplate is at http://html5boilerplate.com/.
Remem ber, just use the bits you need; don’t copy the whole thing verbatim.

For finding out about feature implementation levels, I recommend
Alexis Deveria’s site Can I Use... at http://caniuse.com/, the community site
HTML5 Please at http://html5please.com/, and The HTML5 Test at http://
html5test.com/.

The LabUp! website is a resource for finding or getting involved with
open device testing labs: http://lab-up.org/. The chief tester at the BBC,
David Blooman, wrote a long and detailed article, “Testing for Dummies,”
about how a global organization performs multi-device testing: http://
mobiletestingfordummies.tumblr.com/post/20056227958/testing.

Patrick Meenan’s slides for his talk “Taming the Mobile Beast” contain
a wealth of links and information on testing mobile devices: http://www
.slideshare.net/patrickmeenan/velocity-2012-taming-the-mobile-beast/, and Anna
Debenham’s article for A List Apart, “Testing Websites in Game Console
Browsers,” is about . . . well, the title’s quite self-explanatory: http://www
.alistapart.com/articles/testing-websites-in-game-console-browsers/.

Opera has written detailed instructions about remote debugging at
http://www.opera.com/dragonfly/documentation/remote/. weinre is available
to download from http://people.apache.org/~pmuellr/weinre/docs/latest/. You
can get more information on Adobe Edge Inspect at http://html.adobe.com/
edge/inspect/.

www.it-ebooks.info

http://www.it-ebooks.info/

2
S T r u C T u r e a n d S e M a n T i C S

Remember the parable about the man who
built his house on sand? Or the pigs who

made their houses out of straw and sticks?
Losers. They lost because they didn’t put

enough value on the importance of structure.
To make good sites you need good structure, and on the Web that starts

with HTML. How you mark up your pages gives them a solid structure both
now and in the future. Whatever the context, whether you’re building a heav-
ily interactive web app, a hybrid mobile app, or a one-page brochure site,
putting a sound structure in place is a top priority. A solid structure makes
your pages more accessible and easier to author and maintain, and helps
browsers and other user agents make sense of your pages. A well-structured
DOM can also give a performance boost, making parsing easier for the
browser and requiring less memory.

Beyond simple structure is semantic richness. Giving the content on
your pages this extra meaning provides an immediate benefit: It’s easier for
search engines to crawl and understand your data. And longer-term benefits
that haven’t even been invented yet may arise.

www.it-ebooks.info

http://www.it-ebooks.info/

22 Chapter 2

HTML5 and related technologies make all of this easy. Using existing
and well-implemented methods, you can create pages that are solid, mean-
ingful, high performing, and rich in data.

new elements in hTMl5
One of the major new features in HTML5 is a range of new semantic ele-
ments, extending the suite far beyond its roots in marking up scientific
documents with headings, lists, and paragraphs. Most of the new elements
are aimed at giving a page better structure and developers more options
for marking up areas of content than just using a div with an associated id
or classes.

Here’s one example. In the past, developers might have used this:

<div class="article">...</div>

In HTML5, they have the option of using this:

<article>...</article>

The W3C’s HTML5 spec lists ten structural elements. Of these, three
already existed in HTML4: body, h1–h6 (if we cheat a little and count them
as a single entity), and address. Of the seven new elements, four are what are
known as sectioning content; I’ll get to what this means in a little while, but
for now here’s the list:

article An independent part of a document or site, such as a forum
post, blog entry, or user-submitted comment

aside An area of a page that is tangentially connected to the content
around it, but which could be considered separate, like a sidebar in a
magazine article

nav The navigation area of a document, an area that contains links to
other documents or other areas of the same document

section A thematic grouping of content, such as a chapter of a book, a
page in a tabbed dialog box, or the introduction on a website home page

The other three structural elements define areas within the sectioned
content:

footer The footer of a document or of an area of a document, typically
containing metadata about the section it’s within, such as author details

header Possibly the header of a document, but could also be the header
of an area of a document, generally containing heading (h1–h6) elements
to mark up titles

hgroup Used to group a set of multiple-level heading elements, such as
a subheading or a tagline

www.it-ebooks.info

http://www.it-ebooks.info/

Structure and Semantics 23

HTML5 has other new elements that don’t affect the basic structure of
a page; I’ll cover them where necessary throughout the rest of this book.
For now, let’s look further into the reason these new elements were created
in the first place.

What’s the Point?
The stated aim of these new elements is to provide clear document outlines
for better parsing by the browser and other machines, notably assistive
technology like screen readers. Consider these outlines to be like document
maps, showing the hierarchy of the content within, which headings are most
important, the parent-child relationships between content areas, and so on.

In HTML4, this task was mostly done using the header elements, h1
through h6: The h1 would be unique or the most important heading on the
page, h2 elements were usually the direct children of h1, and so on. Seeing
something like this was fairly common:

<h1>Great Apes</h1>
 <h2>Gorilla</h2>
 <h3>Eastern Gorilla</h3>
 ...
 <h3>Western Gorilla</h3>
 ...
 <h2>Orangutan</h2>
 ...

Nesting headings in this way creates this document outline:

1. Great Apes

a. Gorilla

i. Eastern Gorilla

ii. Western Gorilla

b. Orangutan

n o T e Great ape fans will notice that I’ve left out the bonobo and the chimpanzee. That’s for
reasons of space and clarity, not because of any bias.

The structure I’ve created makes visual sense, and using headings in
this way to create a document outline is known as implicit sectioning.

In HTML5, the sectioning content elements introduced earlier in this
chapter create the sections in the outline, not the headers within those sec-
tions. This is explicit sectioning. So to get the same structure with our Great
Apes markup in HTML5, we’d go for something like this:

<h1>Great Apes</h1>
<section>
 <h1>Gorilla</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

24 Chapter 2

 <article>
 <h1>Eastern Gorilla</h1>
 ...
 </article>
 <article>
 <h1>Western Gorilla</h1>
 ...
 </article>
</section>
<section>
 <h1>Orangutan</h1>
 ...
</section>

The resulting outline would be the same as in the HTML4 example
because each section or article element creates a new section in the outline.
These are the sectioning content elements I mentioned earlier, along with
aside and nav.

Each outline section should have a heading—any heading will do. In
my example, I’ve used all h1 headings, but the heading level used doesn’t
really matter because the sectioning content is what creates new sections.
I could have rolled a die and used that number for each heading level for
all the difference it makes.

n o T e I’m being a little glib here. You can (and should) still use h1 to h6 in a hierarchical
way, as it aids in backward compatibility and makes styling easier.

As well as the heading (or headings, and possibly an hgroup element
to wrap them in), each section can contain a distinct header and footer,
plus further sections and sectioning roots. These roots are elements such as
blockquote and figure, which can have their own outlines but don’t contrib-
ute to the overall document outline.

If this discussion isn’t making a lot of sense to you, you’re in good com-
pany. The confusion over what each of the sectioning content elements
does is so common that the good HTML5 Doctor has created a flowchart
(Figure 2-1) to help you choose the right element for the task at hand.

A flowchart. To help you choose an element. If you’re a good judge of
tone, you might have started to get the impression that I’m not a fan of the
new HTML5 structural elements. If so, you’re right.

The Downside of HTML5 Sectioning Elements
As implied through my perceivable mounting sense of frustration in the
previous section, coming to grips with some of these new elements can be
quite challenging, especially understanding the difference between article
and section. To recap: A section can contain articles and sections, and an
article can contain sections and articles, and both make sections in the
outline. There is a difference between the two, but no one—not even the
writer of the spec—has yet managed a definition so clear and succinct that
developers remember it easily.

www.it-ebooks.info

http://www.it-ebooks.info/

Structure and Semantics 25

Start

<article>

<aside>

<figure>

<div>

<section> Appropriate
element

e.g. in a
feed reader

Sidebar, comments
section, pullquote,
glossary, advertising,
footnote etc that’s
tangentially related to
the page or content…

→ html5doctor.com/aside

One or more images,
graphics, code samples

etc, plus optional
<figcaption>…

→ html5doctor.com/Þgure

A section of the page,
or chapter of an
<article>, with a

heading…

→ html5doctor.com/section

Probably <p>, but
possibly <address>,
<blockquote>, <pre>…

→ html5doctor.com/semantics

News article, weblog or
forum post, comment
on an article, sidebar

widget etc, with a
heading…

→ html5doctor.com/article

Flow content with no
additional semantics,
e.g. for CSS hooks…

→ html5doctor.com/div

A block of ßow content
(not inline phrasing content)

By @riddle & @boblet
www.html5doctor.com

<nav>

Site or in-page
navigation (anything
you’d use a “skip to

nav” link for)

→ html5doctor.com/nav

HTML5 Element Flowchart
Sectioning content elements and friends

2011-07-22 v1.5
For more information:

www.html5doctor.com/semantics

Does it make
sense on its own?

Is it required
 to understand the
current content?

Could you move
it to an appendix?

Is it logical
to add a heading?

Does it have
any semantics?

Is it a major
navigation block?

*

*

*

*

* Sectioning content element
These four elements (and their headings) are used by
HTML5’s outlining algorithm to make the document’s outline
→ html5doctor.com/outline

Yes

Yes Yes Yes

No

Yes

No

Figure 2-1: If you’re confused about which sectioning element is the correct one to use,
the HTML5 Doctor has the answer.

In his book The Truth About HTML5 (CreateSpace, 2012), Luke Stevens
says this about the vague description of article:

Specifications fail when they leave things up to you to work out.
The whole point of a specification is to specify exactly what you
should do. But here it’s open to interpretation, has no clear ben-
efit, and repeats existing functionality. . . .

I can’t disagree. My prediction is that these elements will be badly mis-
used by many people unless clearer definitions can be found.

For technical reasons, I suggest not using the new elements on the
open Web: For one, they’re simply not supported in older versions of Inter-
net Explorer (8 and below). To make those browsers recognize the new ele-
ments, you have to create them in JavaScript. You can do this fairly easily;
just implement the popular HTML5Shiv using conditional comments:

<!--[if lt IE 9]>
<script src="html5shiv.js"></script>
<![endif]-->

But doing this creates a dependency on JavaScript for your visitors;
anyone using old IE with JavaScript disabled doesn’t see any of the content
contained inside the new elements. Although that may be only a small
percentage of users, accessibility should mean that everyone gets to see your
content.

www.it-ebooks.info

http://www.it-ebooks.info/

26 Chapter 2

On top of that, no currently available browsers support the new outlin-
ing algorithm (the JAWS screen reader does, albeit with bugs), so all your
hard work doesn’t really have much benefit—this is likely to change in the
future, of course.

In the end, the decision to use the new structural elements is, of course,
up to you. They’re not mandatory—you can still use div elements as you do
currently. I find it hard to recommend using them, however, unless you’re
prepared to read the HTML5 spec and fully understand exactly how the
new elements work on the outline of a document—and you’re working in
an environment where legacy browsers aren’t an issue. As things are at the
time of writing, I would look for an alternative way to show page structure.
Luckily, one is available, in the shape of WAI-ARIA.

WAI-ArIA
The Web Accessibility Initiative’s Accessible Rich Internet Applications suite
(WAI-ARIA to its friends) was created to address the shortfall in accessibility
that was created as the Web moved beyond simple document markup and
into an era of applications and interactivity.

WAI-ARIA does this by creating a number of HTML extensions (or,
in fact, extensions for any DOM-based languages, such as SVG and XML),
allowing developers to make browsers and assistive technology aware of
interactive content. For example, if you have a link that uses JavaScript to
create an on-screen dialog overlay when clicked, you have no way to make
the browser aware of it; the markup just looks like a standard link:

Launch popup

Because the event is attached to the link using script, the screen read-
ing device has no information about what happens here and can’t give any
context to the user, who remains unaware of the functionality. WAI-ARIA
introduces a new attribute, aria-haspopup, for just this situation, giving infor-
mation to the user about what’s going on:

Launch popup

A whole range of new attributes is available, among them what are
known as landmark roles; these attributes make screen readers and other
accessible navigation devices aware of your page’s structure, so the user can
easily find their way around your document. This solution goes some way
toward fulfilling the structural obligations that the new HTML5 elements
were created to fulfill.

n o T e As mentioned, at the time of writing, some user agents and assistive technologies
don’t parse the new HTML5 document outlines correctly, so the use of landmark roles
may help with backward compatibility.

www.it-ebooks.info

http://www.it-ebooks.info/

Structure and Semantics 27

Landmark roles are applied using the role attribute with a series of
predefined values. These values do not directly correspond to the HTML5
structural elements, but they mostly match very well. For example, if you
want to define the document area that contains general information about
the site, such as the logo and strap line, you add the banner role:

<div role="banner">...</div>

This role is broadly analogous to the header element and, in most cases,
will be used in its place.

Some landmark roles don’t have an HTML5 equivalent: Believe it or
not, no suitable element exists for indicating where the main content of a
page is, so to let the screen reader know the location of key content, we have
the main role:

<div role="main">...</div>

Eight landmark roles are defined in the WAI-ARIA spec:

application Shows an area of a page that’s an interactive application
rather than a document

banner As mentioned, indicates general site content, probably con-
tained in the page header; in this specific context, analogous to the
header element

complementary Shows content that’s related, but not integral, to the
main content, like a sidebar; analogous to the aside element

contentinfo Gives you information about the document, such as legal
instructions. Often located in the footer, so in this context, is analogous
to the footer element

form Indicates any form except search, for example, a contact form

main Indicates the core content of a document

navigation Contains groups of links for navigating this or related doc-
uments, analogous to nav

search Indicates forms specifically used to search this site or others

As well as being useful for navigating and providing some semantic
value, the landmark roles make convenient styling hooks for CSS. Using the
Exact Attribute Value Selector, you can easily apply rules to, for example,
the page header:

div[role='contentinfo'] { background-color: blue; }

This selector has been implemented in pretty much every browser made
in the last 10 years (that I’m aware of), so unless you’re using a very old or
basic one, this technique is useful—be aware that complex selectors can
have an adverse effect on page-loading times, however.

www.it-ebooks.info

http://www.it-ebooks.info/

28 Chapter 2

The Importance of semantic Markup
Before moving on to look at different ways of adding deeper rich meaning
to your pages, let’s pause to ask the question, “Why bother with semantics at
all?” I mean, is something intrinsically wrong with marking up a page using
mostly div elements (as in the following code block)?

<div class="first">This is the heading.</div>
<div class="main">This is the first sentence.
This is the second sentence.</div>

Divya Manian addressed this in a polemical article, “Our Pointless
Pursuit of Semantic Value,” in which she argues that putting too much
emphasis on semantic markup is a waste of time for most people:

Mark-up structures content, but your choice of tags matters a lot
less than we’ve been taught. . . .

I would say, however, that there are two good reasons for using correct
semantic elements. The first and most prosaic is that you’re working to a de
facto standard and writing code with good maintainability. You know if you
use semantic elements, your colleagues or eventual successor will be able to
work on your code without having to learn your naming scheme. And the
reverse is also true: If you take over someone else’s code, you’ll know exactly
what’s going on in the code if he or she has coded to standards.

A more recondite reason is that using semantic elements gives your con-
tent increased aboutness. Simply put, aboutness is a measure of the quality of
meaning; what something is about is described by its aboutness.

As a simple illustration of that principle, imagine you have a web page
that contains W.H. Auden’s poem “Funeral Blues”:

He was my North, my South, my East and West,
My working week and my Sunday rest,
My noon, my midnight, my talk, my song;
I thought that love would last forever: I was wrong.

Although we know that the poem is about death, the word itself doesn’t
appear in the poem. How could a search engine that indexed the page know
what it was about, and return it in the search results for that topic? The
search engine looks at the text of the links to that page, so a link with the text
“read more” provides no context, whereas a link with the text “W.H. Auden’s
poem about death” provides some aboutness.

Using correct semantic elements provides the same benefit. If all of the
content on your page is marked up with divs, the content has no context; if
you mark up your page semantically, you give the content context:

<h1>This is the heading.</h1>
<p>This is the first sentence.</p>
<p>This is the second sentence.</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Structure and Semantics 29

Now you clearly know which header is important and what the main
body content is. You’ve given the content some aboutness.

As well as using semantic elements correctly to mark up your content,
you can increase the meaning of your documents for machines rather than
users (commonly known as structured data) in a number of ways. You can
use existing attributes and elements in defined patterns (microformats) or
extend HTML with new attributes (RDFa and microdata), and I’ll introduce
them all briefly right now.

Microformats
Created by a grassroots coalition of developers, microformats add extra
meaning to content through standardized markup patterns using existing
attributes. Their main attraction is that they work with current development
methods; rather than being an extension to HTML, they are a design prin-
ciple or a set of standard usage patterns.

Microformats range from the fairly complex to the extremely simple.
Here’s an example of probably the most simple of all:

About Gorillas

That’s called the Rel-Tag microformat. The keyword tag in the rel attri-
bute lets other machines know that the URL linked to in the a element is a
page that is described by a tag, the name of which is the last path compo-
nent of the URL—in this case, gorilla. At this point, I should probably point
out—in case you hadn’t noticed—that I really like gorillas.

A more complex, although just as straightforward and useful, example
is the hCard microformat, which marks up common user details with a stan-
dardized “business card” syntax. Consider, for example, this markup, which
I might use to link to someone’s contact details online:

<div class="details">
<p>Peter Gasston writes for Broken Links.</p>
</div>

The markup is fine, but the data doesn’t have a lot of aboutness; the
reader would understand that this is my name and where I write, but a
search engine crawler would probably not be able to make the same cog-
nitive leap. Using the hCard pattern, I can add attribute values to that
markup that provide more semantic richness:

<div class="vcard">
<p>Peter Gasston
writes for Broken Links</
a>.</p>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

30 Chapter 2

Those few standardized class names have given much more meaning
to this content for machines that are programmed to find it; a crawler that
recognizes the hCard pattern will see the vcard class and know that the con-
tent inside contains the information it’s looking for: It knows the first link
contains the full name (fn) of the contact, and the second link contains the
organization (org) the contact works for.

There’s more to microformats than this; there are patterns for events,
reviews, geographic coordinates, even recipes, and plenty more besides.
Search engines like Google use them to improve their search results, so
using microformats in your pages is not (only) an exercise in developer
esotericism.

rdfa
The Resource Description Format in Attributes (RDFa) is an extension of HTML
that provides context to content using a whole new set of bespoke attributes.
The main syntax is known as RDFa Core, and a simple subset called RDFa
Lite is also available. Both rely on predefined schema (descriptions of data)
to describe content.

Better than telling you what that means, I’ll show you (those years at
screenwriting school didn’t go to waste!). One common item of data across
the Web, especially on blogs and news sites, is a date. Quite often you’ll see
a date marked up something like this:

<p class="date">2013-04-01</p>

The markup is functional and uncomplicated, but the only semantic
context is provided by the class name. With RDFa Lite, you can make this
more meaningful and let other machines know this is a date by using the
new property attribute:

<p property="http://purl.org/dc/elements/1.1/date">2013-04-01</p>

The value of the attribute is the URL of the relevant description of the
term “date” from a schema that is part of a standardized vocabulary known
as the Dublin Core.

You probably noticed that the date I’ve used isn’t in a very reader-friendly
format. This is a drawback of RDFa Lite: All the content must be formatted
in a strictly machine-readable way. To provide content better suited for
humans, you must use RDFa Core. With RDFa Core, I can give one set of
information to machines and another to people, using the content attribute:

<p property="http://purl.org/dc/elements/1.1/date" content="2013-04-01">April 1</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Structure and Semantics 31

What the reader sees is the content of the element; what the machine
sees is the value of the attribute. It means extra markup, but everybody’s
happy.

As with microformats, some search engines look for common RDFa
 patterns to improve their search results. I’ll go into this in more detail in
“Rich Snippets” on page 34.

Microdata
HTML5 has addressed the semantic issue with the creation of a simple syntax
called microdata. This is essentially a series of name-value pairs that provide
meaningful machine-readable data. As always, before trying to explain it,
showing you how it works is easier:

<p itemscope>I live in London</p>

This markup creates a single item. The attribute itemscope is used on
the containing element to mark the limits, or scope, of this particular item.
Inside we have the name-value pair, known as a property: The value of the
itemprop attribute is the name—which, in this example, is city—and the ele-
ment’s content is the value—in this case, London. The result is an item with
a single property:

city: 'London'

But you’re not limited to a single property per item; you can have as
many as you like:

<p itemscope>Hello, my name is Peter</
span> and I'm a developer from <span
itemprop="city">London.</p>

In this case, the item’s property list looks like this:

given-name: 'Peter'
role: 'a developer'
city: 'London'

As you can see, this markup is somewhat similar to RDFa, and just like
that format, you can give different values to machines and humans. Look at
this example where I use the datetime attribute:

<p itemscope>My birthday this year is on <span itemprop="birthday"
datetime="2013-12-14">December 14.</p>

www.it-ebooks.info

http://www.it-ebooks.info/

32 Chapter 2

And, as with RDFa, you can describe content with predefined schema
by linking to it with the itemtype attribute:

<p itemscope itemtype="http://example.org/birthday">My birthday this year is
on December 14.</p>

You can use schema such as the previously mentioned Dublin Core, or
even one of your own invention, as I just showed in the previous code block.

The Microdata API
Microdata has a companion DOM API, which is useful for extracting the
data from the page and is already fairly broadly implemented in modern
browsers. The key to the API is the getItems() method, which returns a
NodeList containing all of the items on the page:

var items = document.getItems();

From there, you can choose a single item and, for example, see how
many properties it contains using the properties object:

var firstItemLen = items[0].properties.length;

Or you can discover the value of one of those properties:

var itemVal = items[0].properties['name'][0].itemValue;

You can see these demonstrated in the example file microdata-api.html.
I’ve logged the results in the console, so open up your favorite browser and
take a look. I encourage you to play around with it yourself. For anyone who
doesn’t have a browser handy, Figure 2-2 shows how the results are logged
in Firebug.

Figure 2-2: The results of some simple explorations of the microdata API, shown in the
console

Microdata, Microformats, and RDFa
If you’ve decided that adding machine-readable semantic data to your
pages is the right way to go, which format should you use? The answer, of
course, is it depends. Evaluate your content, read about the strengths and
weaknesses of each of the data types, and decide which one’s best for you.

My personal feeling is that in the future we’ll mostly see a mixture of
microdata with simple microformats. One of the interesting things about

www.it-ebooks.info

http://www.it-ebooks.info/

Structure and Semantics 33

microdata is that it’s capable of accommodating both of its contemporaries
within its own flexible syntax. For example, here’s how to mark up hCard
using microdata:

<div itemscope itemtype="http://microformats.org/profile/hcard">
<p>Peter Gasston
writes for Broken Links</
a>.</p>
</div>

Likewise, you can easily use RDFa data schema:

<p itemscope itemtype="http://purl.org/dc/elements/1.1/date" datetime="2013-04-01">April 1</p>

In my opinion, microdata’s flexibility will lead to it being used more
and more. That said, it’s not perfect for everything; some microformats,
such as Rel-Tag, are so concise and easy to use that’s there’s little point in
trying to replace them.

Schema.org
One good reason for using microdata, and another reason I think it’s set to
conquer microformats and RDFa, is that you might receive a nice advantage
and get your content noticed and promoted by search engines and portals.
In 2011 four big Web giants—Google, Microsoft, Yahoo!, and Yandex—
launched a new website, Schema.org, which introduced a set of shared
vocabularies for marking up common patterns using microdata.

Those patterns include reviews, events, places, items, and objects, things
that get discussed frequently across the Web. To illustrate, say you’re writing
a book review on your website (I’ve chosen a book at random and given it
an unbiased review):

<div class="review">
 <h1>The Book of CSS3, by Peter Gasston</h1>
 <p>What an amazing book! 5 stars!</p>
</div>

This review actually contains two items: the details of the book and a
review of it. Schema.org has two vocabularies that you can use to mark this
up semantically: they are Book and Review. A visit to the relevant sections
shows me which microdata patterns I should use. With that done, I can
update my markup:

<div class="review" itemscope itemtype="http://schema.org/Review">
 <h1>The Book of CSS3, by <span
itemprop="creator">Peter Gasston</h1>
 <p>What an amazing book! <span
itemprop="reviewRating">5 stars!</p>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

34 Chapter 2

Although my markup has gotten more complex, it means more now.
Each of the vocabularies I’ve used is defined with a link to the relevant
schema in the itemtype attribute, and the items are marked up with preset
itemprop values.

What’s interesting about Schema.org is the way that specific schema
inherit properties from broader ones; Book, for example, has properties
from its own schema, the broader CreativeWork vocabulary, and the top-level
Thing (great name!), which has the most generic properties.

By marking up my content using Schema.org patterns, all of the crawlers
that reach my page will know the author and title of this book, the fact that
I’m reviewing it, and that I gave it a five-star rating. If someone searches for
that book, my review could appear in the search results or be aggregated
with others to provide a decent overview to the reader.

Rich Snippets
The method of giving extra information in search results, which is used by
many search engines, is known by Google as rich snippets. Rich snippets give
a user’s search query more context, allowing the user to better evaluate the
relevance of the result without having to click through to the page. You can
see an example of a rich snippet in Figure 2-3.

Figure 2-3: Example of a rich snippet giving extra information on Google search results

Rich snippets work with microformats and RDFa, but its preferred
syntax is microdata. Plenty of information and documentation is available
for developers on Google’s Webmaster pages, including a useful tool to
test if your microdata is formatted correctly. In Figure 2-4, you can see the
data this tool has extracted from the book review created in the previous
section.

Figure 2-4: Data extracted from the marked-up book review by the rich snippet
testing tool

www.it-ebooks.info

http://www.it-ebooks.info/

Structure and Semantics 35

data Attributes
A further way that HTML5 extends the meaning that elements have is
through the use of data attributes. These are user-defined attributes,
the values of which are intended to provide information related to an ele-
ment but without giving any extra semantic meaning to either machines
or humans. Let me explain that in a little more detail.

Say you want to output a set of data, each item of which has two values—
a name and a number (a unique database ID, for example). You want the
name to be shown in the document, but you also want to make the number
available for running scripts on. As it stands, no relevant attribute is avail-
able to store that information; you’d probably have to use a class:

<p class="id-123">Peter</p>

Data attributes were created for just this reason: associating data. They
let you store that extra information without implying any extra meaning, as
a class does. Each data attribute starts with the word data- and then a user-
defined unique key; for our example, we could use this:

<p data-id="123">Peter</p>

The data attribute id is now associated with the value Peter. Although it
gives no extra semantic meaning to the element, the attribute is available to
provide context to other processes: perhaps information about this data is
in an associated JSON file, so you can use JavaScript to look it up.

The Data Attributes API
So scripts can get at this data more easily, a simple DOM API is available
that uses the dataset property. To get the value of a data attribute, use this
property with the key of the attribute you’re querying:

var el = document.querySelector('p');
var id = el.dataset['id'];

Applied to this example markup, the returned result would be 123. You
can also update attribute values with dataset:

el.dataset['id'] = 100;

Here’s an example that shows this at work:

var el = document.querySelector('p');
console.log('The ID is',el.dataset['id']);
el.dataset['id'] = 100;
console.log('Now the ID is',el.dataset['id']);

www.it-ebooks.info

http://www.it-ebooks.info/

36 Chapter 2

In this example, I perform three operations: first getting the id data,
then setting it to 100, then getting it again, and each time logging the results
into the console. The resulting output is shown in Figure 2-5.

Figure 2-5: Showing the results of data attribute manipulation
with the API in the console

jQuery and Data Attributes
If you use jQuery, interacting with data attributes is even easier (if you don’t
know what jQuery is, I’ll explain it in Chapter 5; you can come back to this
section after you’ve read it). Use the data() method for getting and setting
data values:

var id = $(el).data('id');

This code is analogous to that shown in the previous section and would
return the same value, 123.

One big advantage, however, is that, unlike dataset where all results are
returned as a string, the data() method also parses the value of the attribute
and converts it into the correct type; using the previous example, the type
would be a number. But if you change the markup:

<p data-name="Peter">123</p>

And use the data() method again:

var name = $(el).data('name');

The value of the variable name is Peter, and its type is a string.
To see this in action, take a look at the example file data-attributes-jquery

.html. In it, I’ve combined the two different data attributes in the same
markup:

<p data-id="123" data-name="Peter">Gasston</p>

Using jQuery, I’ve logged each data attribute’s type into the console
using JavaScript’s typeof operator:

var el = $('p');
console.log('ID:',typeof el.data('id'));
console.log('Name:',typeof el.data('name'));

The resulting output is shown in Figure 2-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Structure and Semantics 37

Figure 2-6: Finding the type of the results using the
jQuery data() method with data attributes

Data Attributes in the Wild
Data attributes are so useful that some companies already take extensive
advantage of them. Twitter was quick to adopt them, allowing them to be
used as an option for adding a Tweet button to web pages. Certain param-
eters about the content are stored in a set of predefined attributes:

<a href="https://twitter.com/share" class="twitter-share-button"
data-url="http://broken-links.com" data-via="stopsatgreen">Tweet

By including a call to Twitter’s JavaScript elsewhere on the page, this
element is replaced by a Tweet button using the supplied data. Many other
social services, such as Facebook, Google+, and LinkedIn, use data attri-
butes in the same way.

Web components: The future of Markup?
An exciting new approach to extending HTML is in the proposal for what’s
currently known as Web Components. This is a collective title for a group of
technologies that aim to make it easy to create rich interfaces for web appli-
cations, using CSS and markup.

As I write this, the specification is at draft stage and very much subject
to change, so instead of talking about it here, I’ll cover Web Components in
more detail in Chapter 11.

summary
In this chapter, I’ve covered a core function of a good website or applica-
tion: the underlying structure. Using markup in a correct and meaningful
way lays the foundations for everything else I’m going to cover in this book
and will be extremely important to making sure your own sites are main-
tainable and scalable.

I’ve been a little mean to HTML5 structural elements, but whether you
use them or not, you should definitely consider using WAI-ARIA in your
project, regardless of the context. Content accessibility is the bedrock of the
Web, and even if you use roles and nothing else, you and your users win.

You also got a look at adding context to your sites through semantic
and structured data, and you learned the importance of aboutness. The
approach you take will, of course, depend on the context you’re making
it for. Building a large database-led website with lots of consumer-focused

www.it-ebooks.info

http://www.it-ebooks.info/

38 Chapter 2

content probably means you want to add lots of semantic richness in order
to get the most from search engines and crawlers. In this case, you’ll want to
consider RDFa, microformats, and/or microdata. Building a hybrid app for
mobile devices, however, will make that much less of a consideration.

further reading
HTML5 Doctor is the best source information for most HTML5 topics,
including the clearest definition of the new outline algorithm I’ve read
so far, in this article by Mike Robinson: http://html5doctor.com/outlines/.
You can download the element flowchart shown in Figure 2-1 from http://
html5doctor.com/resources/#flowchart/. See also Derek Johnson’s article
in Smashing Magazine : http://coding.smashingmagazine.com/2011/08/16/
html5-and-the-document-outlining-algorithm/.

For much more detail on the HTML5 structural elements problem, I
strongly suggest you read Luke Stevens’s book The Truth About HTML5; find
it at http://www.truthabouthtml5.com/. If you want to read the full HTML5
specification and make up your own mind, I advise going for the developer’s
version at http://developers.whatwg.org/sections.html.

Read the full WAI-ARIA specification at http://www.w3.org/TR/wai-aria/.
The Paciello Group Blog is worth reading for information about accessibility
in HTML5, and this post on landmark roles is directly relevant: http://www
.paciellogroup.com/blog/2010/10/using-wai-aria-landmark-roles/.

Divya Manian’s article on semantics was published by Smashing Magazine
at http://coding.smashingmagazine.com/2011/11/11/our-pointless-pursuit-of-seman
tic-value/. For more on aboutness and the importance of semantics, I highly
recommend the book Ambient Findability: What We Find Changes Who We Become
by Peter Morville (O’Reilly, 2005). The website http://webdatacommons.org/
provides information and statistics about sites that use structured data.

Read all about microformats at http://microformats.org/. A revision of the
syntax, microformats 2.0, was started in 2010 and is still underway; learn
more about that at http://microformats.org/wiki/microformats-2.

If you want to learn more about the RDFa format, the W3C published
an excellent primer: http://www.w3.org/TR/xhtml-rdfa-primer/.

The best resource for learning about microdata comes from the HTML5
Doctor again: http://html5doctor.com/microdata/. If you’re feeling masochistic
and prefer to read the spec in detail, you’ll find it at http://www.w3.org/TR/
microdata/.

You can get more information on Schema.org at—wait for it!—http://
schema.org/, and Google’s documentation of rich snippets is at http://support
.google.com/webmasters/bin/answer.py?hl=en&answer=99170. You’ll find the
testing tool at http://www.google.com/webmasters/tools/richsnippets/.

John Resig wrote a concise introduction to data attributes on his blog,
http://ejohn.org/blog/html-5-data-attributes/, and the data() method is fully
documented on the jQuery website at http://api.jquery.com/data/.

www.it-ebooks.info

http://www.it-ebooks.info/

3
d e v i C e - r e S P o n S i v e C S S

With a solid structure in place, the
next step is to plan how you’re going to

 display your content. You have many differ-
ent approaches and methodologies to choose

from. Among the development community’s chat-
tering classes, two of the most popular methods of
building websites today are adaptive or responsive, both of which I explain
later in this chapter. For now you just need to know that, at their core,
they’re similar, with only one mechanism separating the two.

This chapter will be more about learning the fundamental techniques
that allow you to make great websites regardless of your approach, and the
most important technique is something that both adaptive and responsive
methods have in common, something that is absolutely essential to the new
world of multi-device development: media queries.

www.it-ebooks.info

http://www.it-ebooks.info/

40 Chapter 3

Media Queries
In my opinion, media queries are the biggest agent of change in website
design for many years—probably since CSS itself became mainstream. The
widespread adoption of CSS allowed you to leave behind the rigid limita-
tions of table-based websites, and media queries take that a step further, let-
ting you style pages in a way that’s sympathetic to the specifications of each
device your sites are displayed on.

A media query is a logical statement: If the logic is true, the style rules
within the statement are applied; if the logic is false, the rules are skipped.
The parameters of the statements are known as media features, and the most
commonly used today concern the dimensions of the device or the viewport.
But before discussing media features in detail, let’s see how they’re used.

Media queries extend the media types syntax used in CSS 2.1 and
HTML 4.01—remember, that’s the syntax that lets you call media-dependent
styles, such as when linking to an external stylesheet:

<link rel="stylesheet" href="foo.css" media="screen">

This code calls the external stylesheet foo.css only when the viewing
device is a screen—in other words, not a different media type such as print.
You extend this syntax by simply adding the word and and including the
query itself in parentheses:

<link rel="stylesheet" href="foo.css" media="screen and (query)">

This modified code has two conditions: The media type should be a
screen, and the logic of the media query should be true. If both of these
conditions are met, foo.css is applied.

You can also use media queries to include external stylesheets from
within other stylesheets, using the @import at-rule. The following code has
the same logic as the previous code block, but it can be used within style
tags or an external stylesheet:

@import url('foo.css') screen and (query);

W a r n i n g Performance issues can occur when using @import in this way, so proceed with cau-
tion. For more details, see Steve Souders’s blog post, “Don’t Use @import” (http://
www.stevesouders.com/blog/2009/04/09/dont-use-import/).

Finally, you can use media queries inline, which is handy when you
want to apply blocks of rules for specific cases rather than calling external
stylesheets:

@media screen and (query) { ... }

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 41

So now that you know how media queries work and how to include them
in your pages, let’s move on to explore the media features themselves—
starting with the most common, those that use the dimensions of your
device or browser viewport.

Media Features Based on Dimensions
Media queries are most commonly used today for detecting the dimensions
of the agent being used to view your content and then serving up the appro-
priate rules for display on that agent: large text and images for big moni-
tors, small text and a single-column layout for smartphones, that kind of
thing. Of course, there’s more to media queries than those simple contexts,
but you get the general idea.

You need to consider two sets of dimensions: first, those of the device
itself, and second, those of the agent’s viewport (for most people that is a
web browser, but the viewport could also be an app window) on that device.
A person may visit your site using an enormous wide-screen television, but
that’s of little concern to you if the app the person is using to view your site
only occupies a quarter of the screen. On certain devices, the two sets of
dimensions are the same—on most smartphones and tablets, for example,
the browser’s width is the same as the device’s width.

n o T e The viewport itself is subject to change on some devices; see “Device Adaptation” on
page 48 for more details.

The viewport’s dimensions are probably the most important and the
ones that you’ll use the most, and the media features that are relevant to
these are height and width. The viewport dimension features take as an argu-
ment a single length value that the logic is tested against; if the dimension
in question is equal to the supplied length value, the logic is true and the
rules are applied. In the following query, the rule inside the curly brackets
is applied to the body element of the viewport when it is exactly 480px wide:

@media screen and (width: 480px) {
 body { background-color: #00f; }
}

n o T e Working with width is much more common so I’m using width in the examples in this
section, but the same techniques apply to height also.

I’ve used a px value in this example, but any length unit is permitted.
Regardless of which unit you use, an exact value is likely too specific for
most purposes. A pair of extensions to the feature makes it more flexible,
however.

www.it-ebooks.info

http://www.it-ebooks.info/

42 Chapter 3

Many media features, including width, allow the prefixes max- and min-
before the feature name. These stand for maximum and minimum respec-
tively, which you probably don’t need me to explain, and in practice mean
“no more than” and “no less than.” For example, using max-width you can
apply style rules to any browser that is no more than 480px wide, and using
min-width, to any that is no less than 480px wide:

@media screen and (max-width: 480px) { ... }
@media screen and (min-width: 480px) { ... }

In the example file mq-width.html, you can see a simple demonstration
of these prefixes in use. The page has three iframe elements with widths of
190px, 200px, and 210px respectively, and with a unique id value for your
reference:

<iframe src="mq-hello.html" width="190" id="a"></iframe>
<iframe src="mq-hello.html" width="200" id="b"></iframe>
<iframe src="mq-hello.html" width="210" id="c"></iframe>

Because an iframe creates a new viewport, you can use the width media
feature to apply rules to each differently sized viewport. The page that the
iframes refer to, mq-hello.html, contains an inline style block in the header
that applies different border-style properties to the elements, depending on
the media features that are matched. This task is performed with the fol-
lowing three media queries:

u @media screen and (width: 200px) {
 h1 { border-style: solid; }
}

v @media screen and (min-width: 205px) {
 h1 { border-style: dotted; }
}

w @media screen and (max-width: 195px) {
 h1 { border-style: dashed; }
}

The rules are applied like this: u applies to iframe #b, which has a width
of 200px; v to iframe #c, as it’s at least 205px wide; and w to iframe #a, as
it’s no wider than 195px. You can see the result in Figure 3-1.

Figure 3-1: Applying different rules to viewports of different widths using media queries

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 43

Now, I’m sure it doesn’t take much imagination on your part to see how
the width feature could be useful: You could use smaller text on smaller
screens and larger text on larger screens, for example:

@media screen and (max-width: 480px) {
 h1 { font-size: 2em; }
}
@media screen and (min-width: 481px) {
 h1 { font-size: 3.6em; }
}

n o T e The queries I’ve used here are just for illustration. You can approach this in a better
way, which I cover in “Mobile First and Content Breakpoints” on page 57.

If you’re sure you want to work with the dimensions of the device,
not those of the viewport, you can use the device-width and device-height
 features—although, as before, I think width is a more commonly used
dimension than height, so I’ll concentrate on the former. The way you
use the device-width feature is, for all practical purposes, the same as for
the width feature—only the metric it responds to is different. As with width,
device-width can be extended with max- and min- prefixes:

@media screen and (max-device-width: 799px) { ... }
@media screen and (device-width: 800px) { ... }
@media screen and (min-device-width: 801px) { ... }

Another way to serve rules depends on the device’s or viewport’s
aspect ratio. The aspect ratio is the ratio of width to height (or device-width
to device-height); a 1024×768 monitor, for example, has an aspect ratio of
4/3—that is, four horizontal pixels to every three vertical pixels—which is
common for older screens. Newer widescreen devices (such as the iPhone 5)
tend to use a 16/9 ratio.

n o T e I discuss pixels further in “A Quick Digression: All About Pixels” on page 45.

To target a screen with a 4/3 aspect ratio, you’d use the device-aspect-
ratio feature:

@media screen and (device-aspect-ratio: 4/3) { ... }

The max- and min- prefixes apply to these features as well, so to create a
query where you wanted to target only viewports—not devices—which are
currently in at least an 8/5 ratio, you’d use the min-aspect-ratio feature:

@media screen and (min-aspect-ratio: 8/5) { ... }

www.it-ebooks.info

http://www.it-ebooks.info/

44 Chapter 3

A quick way to work out which aspect ratios are greater than others is to
divide the first figure by the second; a 4/3 ratio works out to 1.333, whereas
8/5 works out to 1.6. The larger the result, the wider the ratio. The example
shown here applies only to screens for which that number is 1.6 or more.

Probably more useful than the very precise figure of an aspect ratio
is the orientation of the viewport—whether it’s in portrait mode (height is
greater than width) or landscape mode (width is greater than height). You
query this with the orientation feature. This feature is especially useful for
handheld devices like phones and tablets that can change orientation often:

@media screen and (orientation: portrait) { ... }

The max- and min- prefixes don’t apply to this feature for (hopefully)
obvious reasons.

Combining and Negating Media Queries
You can add a series of logical statements by repeated use of the and key-
word with extra media queries. When and is used, the rules are applied only
if all of the media query logic is true; for example, to test if a viewport is
both in landscape mode and at least 800em wide, you could use this code:

@media all and (orientation: landscape) and (min-width: 800em) { ... }

You can actually simplify this more; the all media type is the default
state, so you can leave it out of queries, also making the first instance of and
unnecessary:

@media (orientation: landscape) and (min-width: 800em) { ... }

You can create a series of media queries and apply the rules if any one of
them is true, using the comma separator to act like an or operator. In this
example, the rules are applied if either the device is in landscape mode or
the width of the viewport is at least 800em:

@media (orientation: landscape), (min-width: 800em) {}

Finally, you can reverse the logic of a media query by using the not
operator; added to the start of the query, this operator means the rules are
applied if the logic of the query is false. In this code the rules are applied to
any device that has an aspect ratio other than 8/5:

@media not all and (device-aspect-ratio: 8/5) {}

Finding the right balance of media queries for your site can be a quite
complex act involving many different variables, but the end result can be
extremely satisfying. I highly recommend spending time really coming to

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 45

grips with how they work. Zoe Mickley Gillenwater wrote an excellent post
on the topic, Essential Considerations for Crafting Quality Media Queries, in
which she says:

Designing web layouts with media queries is a process. You need to
keep them in mind from the very beginning and make decisions
at several points about how to integrate them in ways that will
make the most sense for your site. There are very few always-right
or always-wrong answers.

This post is a great piece of work that deserves to be read and
digested fully.

A Quick Digression: All About Pixels
As we’ve moved into the multi-device era, a point to consider beyond the
dimensions of the screen is its resolution. Many new devices, especially
smartphones, now ship with high-resolution screens, so if you want to
provide an optimal experience for everyone, you need to consider how
images and other objects will display on those screens. Before I get into
that, however, I need to talk briefly about pixels.

To talk about resolution-dependent media queries, first I need to define
some terms, starting with those related to pixels (I presume that readers
know what a pixel is). The physical pixel count of a screen is the number of pix-
els contained in the width of the screen. For example, a 1280×800 screen
has a physical pixel count of 1280 along its broad edge. The iPhone 3GS, in
its default (portrait) position, has a physical pixel count of 320, whereas the
iPhone 4 and above, using the “retina” display, has a count of 640.

The pixel density of a screen is traditionally measured in pixels per inch
(PPI)—actually if you prefer the metric system, you can use pixels per centi-
meter (PPC) instead, but I’ll stick to imperial measure for this description.
Imperial measure is sometimes known as dots per inch (DPI), even by popular
desktop image-editing software, and the two terms—PPI and DPI—can be
considered interchangeable. Regardless, pixel density is a measure of the
number of pixels that can be placed in a line that spans one inch of the
device’s screen.

For the vast majority of screens in use until recently, the PPI is 96. With
the rise of smartphones, however, the PPI count has been steadily increas-
ing; the original iPhone (and all versions up to the 3GS) has a 163 ppi resolu-
tion, whereas the iPhone 4 and above has double that, an incredible 326 ppi
(despite the screen staying the same size—you’ll see why in a second).

So far, so straightforward—but that’s not the whole story. The majority
of high-density screens now have an extra, virtual pixel unit: the density-
independent pixel (DIP), sometimes referred to as a CSS pixel. This is a rela-
tive unit; one physical pixel is equal to any number of DIPs. This allows you
to scale websites up (and down), generally to provide better usability on
smaller screens.

www.it-ebooks.info

http://www.it-ebooks.info/

46 Chapter 3

The ratio of virtual pixels to physical pixels is known as the device pixel
ratio. I’ll use the abbreviation DPR for this, although it is also known as
DPPX (dots per pixel). Devices that don’t have DIPs have a DPR of 1—that is,
one virtual pixel to one physical pixel. The most common high-resolution
devices as I write this (such as the Samsung Galaxy S III or the iPhone 5)
have a DPR of 2—two virtual pixels to one physical.

Figure 3-2 illustrates this. On the left is a 2×2 block of physical pixels;
in the center, a screen with a DPR of 1.5 fits 9 DIPs into the same space; and
on the right, a screen with a DPR of 2 fits 16 DIPs into the space.

Figure 3-2: Comparing different DPR values: 1 (left), 1.5 (center), and 2 (right)

You can find out the DPR of any device by using JavaScript, as most
browsers now support a DOM property called devicePixelRatio on the window
object. To find out the DPR of the device you’re using, just type this into
your browser’s developer console:

window.devicePixelRatio;

If your browser doesn’t have a developer console, I’ve written a script in
the example file mq-dpr.html that you can use instead.

This discussion has all been quite technical, and to be honest I’ve barely
scratched the surface, but hopefully you understand enough about resolu-
tion and pixels to be able to get the most out of the rest of this chapter.

Screen Resolution Media Queries
As you’ve just seen, many devices now ship with very high-resolution screens.
Although certainly a positive thing, these screens do have one or two draw-
backs, mainly around the display of graphics. As you’re probably aware, two
types of graphic exist: vector, such as SVG, is a series of coordinates used to
display shapes on screen regardless of resolution (I discuss SVG in more
detail in Chapter 7); and bitmap or raster, such as JPG and PNG, is a series
of different colored dots that are more explicitly tied to pixels.

The practical difference between the two types is that bitmaps are saved
with a PPI setting, and a bitmap graphic that looks fine on a screen with
a low DPR will look pretty poor on a device with a high one. That means
you will most likely want to use higher PPI bitmaps for higher-resolution
screens, which is why media features exist to do just that.

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 47

In fact, two media features are available. The first, and most widely
used owing to WebKit’s popularity on mobile devices, is a proprietary fea-
ture called -webkit-device-pixel-ratio. This feature—along with the related
max- and min- prefixes—lets you target a device’s DPR. For example, here’s
how to add a high-resolution image to devices with a DPR of at least 2:

E { background-image: url('foo.png'); }
@media screen and (-webkit-min-device-resolution: 2) {
 E { background-image: url('foo-hi-res.png'); }
}

W a r n i n g Remember that a high-resolution device doesn’t automatically mean a good Internet
connection. The user might not thank you for making him or her download a 600kB
image over a low 3G connection.

All pretty straightforward, right? Wrong. -webkit-device-pixel-ratio is, as
mentioned, a WebKit-proprietary CSS extension and not part of the Media
Queries specification. The spec actually contains a similar query, resolution.
This query immediately improves upon -webkit-device-pixel-ratio by being
more flexible in the values it accepts; you can, for example, use the dpi unit.
Remember, a standard monitor resolution has a DPI (or PPI) of 96; that
being the case, you can target those monitors with this code:

@media screen and (resolution: 96dpi) {
 E { background-image: url('foo.png'); }
}

But you can also target higher-resolution screens by multiplying the
standard count, 96, by the DPR. For example, the following query applies to
devices with a DPR of 2 or above, just like in the -webkit-device-pixel-ratio
example a few paragraphs ago:

@media screen and (min-resolution: 192dpi) {
 E { background-image: url('foo-hires.png'); }
}

You can do this in an even better way, however, by using the dppx unit.
This unit is equivalent to the DPR, so an updated version of the previous
example employs this code:

@media screen and (min-resolution: 2dppx) {
 E { background-image: url('foo-hires.png'); }
}

-webkit-device-pixel-ratio has been around since the iPhone was
launched in 2006, and an awful lot of legacy devices are out there, so this
extension is not going anywhere in a hurry. That being the case, you’re
probably going to have to test for both by extending the media query with

www.it-ebooks.info

http://www.it-ebooks.info/

48 Chapter 3

a little extra logic. As previously mentioned, using a comma-separated list
of media queries means the rules are applied if any one of them is true:

@media screen and (min-resolution: 2dppx),
 screen and (-webkit-min-device-resolution: 2) {
 E { background-image: url('foo-hires.png'); }
}

This logic tests that the device has a DPR of at least 2 but works in both
legacy WebKit browsers and in ones that are compliant to the spec.

n o T e To complicate matters further, some browsers—such as Opera Mobile—allow you to
change the device pixel ratio.

Device Adaptation
Mobile browsers are capable of scaling websites for better presentation on
small screens but presume that most websites are aimed at desktop browsers.
This presumption means that, by default, they show a site zoomed out/scaled
down in order to accommodate the whole thing (or as much as possible) on
screen. This is generally known as the layout viewport, and the drawback of
the layout viewport is that the zoomed-out view can leave sites that are opti-
mized for mobile looking very small indeed (you can see it in the “before”
state in Figure 3-3).

Figure 3-3: The same page displayed on an iPhone before (left) and after (right) the appli-
cation of the viewport meta tag

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 49

The solution that Apple came up with when they created Safari for
iPhone was to ask developers to add a special tag, known as the viewport
meta tag, in the head of their documents. This tag is used to control the
dimensions and scaling of the browser viewport. Here’s an example:

<meta name="viewport" content="width=device-width">

You can use a number of different values in the content attribute, but the
ones in this code mean: “Make the width of this document the same as the
width of this device.” The difference can be clearly seen in Figure 3-3, which
shows the same document before and after this tag is applied. In the before
shot, the browser has automatically adjusted the main body text to better fit
the screen, but the heading and image are very small; in the after shot, the
heading and image are more naturally sized for the screen.

A device’s width will vary, but it is also affected by DPR. The iPhone 3GS
screen is, as mentioned, 320px. But although the iPhone’s “retina” screen has
a physical pixel count of 640px, as it has a DPR of 2, it only counts 320px—
the DIPs—when the viewport meta tag is used with the device-width value.

Other parameters used in this tag control the initial zoom level of the
page and whether the user has control over zooming it. In this example, the
initial zoom level is 1.5x, and the user will not be able to change that:

<meta name="viewport" content="initial-scale=1.5,user-scalable=no">

W a r n i n g Taking the option to zoom out of users’ hands can be extremely annoying; think care-
fully before applying this option.

Although the viewport meta tag fulfills its main function well, it does
have a drawback: Using a meta tag means you can define only one set of
parameters per page. For example, rather than using the default device
width, you could specify a fixed size instead:

<meta name="viewport" content="width=480">

The problem is that all devices that recognize the viewport tag will set
their zoom level at 480px, which is fine for smaller handheld devices but
less useful for large tablets.

The solution is to set the viewport parameters in CSS. You do this with
the @viewport at-rule. Where the viewport meta tag uses different param-
eters in the content attribute, @viewport uses CSS syntax to perform the same
functions with a subset of specialist properties. To illustrate, I’ve repeated
the previous example:

@viewport { width: 480px; }

www.it-ebooks.info

http://www.it-ebooks.info/

50 Chapter 3

The reason this solution is more useful is that you can combine @viewport
with media queries to have different viewport parameters, depending on
the viewing device. Consider this example:

@media screen and (max-width: 480px) {
 @viewport {
 width: 480px;
 }
}
@media screen and (min-width: 481px) {
 @viewport {
 width: device-width;
 }
}

For screens with a 480px width or lower, the viewport will be displayed
at 480px, and on larger screens, at their natural size.

This approach is known as device adaptation and has the advantage of
making sitewide changes much easier by requiring the modification of only
a single CSS rule, rather than an unknown number of individual pages.

Input Mechanism Media Features
Although I’ve talked a lot about the dimensions or resolution of screens, I
have to cover other key factors as well; for instance, the ways in which a user
interacts with the device is just as important. The mouse and keyboard pair-
ing has been the dominant input mechanism for many years, but the new
device landscape accommodates not only that but also touch, stylus, and
voice—and who knows what else in the future.

In recognition of the variety of input mechanisms, two new media
features were proposed in the Media Queries Level 4 specification. These
allow you to provide style rules sympathetic to the way users interact with
your pages.

The first of these is the pointer feature, which has three available
parameters: Of today’s most common input mechanisms, a device with
keyboard or voice control has no pointer, so is classed as none; finger-based
touch screens like a tablet or smartphone are most likely classed as coarse;
and a mouse or stylus, which provides very close control, is classed as fine.

That being the case, here’s an example query adding extra padding
to link elements on sites viewed using touch-screen (or other less precise)
devices:

@media screen and (pointer: coarse) {
 a { padding: 1em; }
}

One feature unique to devices with mouse input is the hover state,
which detects when an on-screen pointer is positioned above an element.
Obviously, this feature doesn’t exist for touch or voice input. To address

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 51

this, a hover feature is available for testing the existence of a hover state in
the device. As the hover query is Boolean, no second value is required:

@media screen and (hover) {}

If you want to set rules on devices that don’t have a hover state, you could
use either the 0 value or the not operator, so these rules are analogous:

@media screen and (hover:0) {}
@media not screen and (hover) {}

W a r n i n g These are only proposals, and although they were already implemented in WebKit at
the time of writing, they are subject to change.

Further Media Features
A handful of other media features are available, many of which deal with
device capabilities that will be out of the scope of most developers. A few
of those features are related to color; for example, if you’re developing for
ebook readers, some of which use grayscale “liquid paper,” you might want
to investigate using the monochrome query and its opposite, color:

@media screen and (color) {}
@media screen and (monochrome) {}

I have to point out that in my (limited) tests, browsers on grayscale
devices don’t always identify themselves as monochrome, even when these
features are fully supported. As always, test on as many devices as possible.

For the remaining features in the Media Queries spec, I can do little
more than repeat what’s in the documentation, as they’re largely aimed at
specialist devices that I don’t have access to. I urge you to take a look at the
spec for yourself and see if those features are relevant to your project.

Proposed in the draft version of the Media Queries Level 4 spec is
the useful script feature, which tests whether JavaScript (or, more correctly,
ECMAScript) is both supported and enabled by the browser. script is Bool-
ean, so it requires no extra value to detect if script support is present:

@media screen and (script) {}

At the time of writing this chapter, this feature is still only a proposal
and not implemented by any browser and, as such, may be removed at any
time, but I felt it was worthy of inclusion based on just how useful it could be.

Media Queries in Javascript
The benefit of media queries in CSS is obvious, so you shouldn’t be surprised
that they have been adopted into JavaScript as well. This means you can run
functions or load in more external scripts depending on device capabilities,
leading to sympathetic and improved behavior as well as presentation.

www.it-ebooks.info

http://www.it-ebooks.info/

52 Chapter 3

The matchMedia() method is used to run the queries, which are provided
in a string as an argument. Try running this in your developer console:

window.matchMedia('screen and (min-width: 800px)');

The result of this code is a MediaQueryList object, and how it appears in
your console depends on the browser and tools you use; Figure 3-4 shows
the result when I enter this query into Firebug.

Figure 3-4: The result of running a matchMedia() query in the console of Firebug

What I want from this object is the value of the matches property, which
will return true or false depending on the query logic. Using this value,
you can easily build an if statement to perform actions depending on the
result; in this example, if the viewport is at least 800px wide, the function
foo() runs:

var mq = window.matchMedia('screen and (min-width: 800px)');
if (mq.matches) { foo(); }
else { // do something else }

In the file mq-matches.html, you can see a short script I’ve written based
on this logic, which simply shows an alert that tells you whether your
browser window is at least 800px wide; try resizing your browser window
and refreshing the page to see different results.

Taking advantage of JavaScript’s dynamic nature, you can extend this
with a listener that fires if the device’s state changes, for example, if the user
resizes his or her browser window or changes the orientation of his or her
device. I can extend my previous code snippet by adding a new function,
widthWatch(), containing the original if-else logic, which is called whenever
the viewport changes and fires the listener:

function widthWatch(mq) {
 if (mq.matches) { foo(); }
 else { // do something else }
}
var mq = window.matchMedia('screen and (min-width: 800px)');
mq.addListener(widthWatch);
widthWatch(mq);

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 53

In the example file mq-widthwatch.html, you can see the results of a
script based on this; it returns the same results as in the previous example,
but you won’t need to refresh the page to get a different result; just resize
the window.

Adaptive vs. responsive Web design
As mentioned at the start of this chapter, two main methodologies, known
as adaptive and responsive, are used for modern website development. Both
share the concept of using breakpoints, which are the limits created by using
media queries, at which point a change to the site layout is imposed.

The difference between adaptive and responsive methodologies comes
down to how the site changes between breakpoints; adaptive is essentially a
series of fixed-width layouts, whereas responsive uses flexible dimensions so
even between breakpoints sites have fluidity.

My opinion is that, given the enormous variability in device screen
sizes, making a series of fixed-width pages to accommodate even the most
common configurations is probably a fool’s errand. The better approach,
and the key to building responsively, is to use what’s known as fluid design,
which involves using percentages for length values to make the dimensions
of the elements on the page relative to the size of the viewport.

Making a page that’s a fixed 960px wide was acceptable when you knew
your users were mostly using desktops or laptops with monitors at least 1024px
wide, but those days are over, and designing that way nowadays means users
with mobile devices see a scaled-down screen that they have to zoom in and
out of and scroll around to see. Not the end of the world, but also not ideal.

Using percentages instead of fixed values means your page elements
scale up or down along with the size of the viewport, making the content
flow inside the boundaries of the screen—hence the name, fluid. Combine
this with media queries for content or devices, and you have the very core
of responsive design and a tailored, sympathetic experience for your user,
regardless of his or her device.

Working with percentages is not without its problems, however, one of
which is the difficulty of mixing length units. Consider, for example, a page
with three columns: a central column that’s 50 percent wide, and a column
on either side that’s 25 percent wide:

E, G { width: 25%; }
F { width: 50%; }

Now say you want to add 20px of padding to the left and right of the
central column, to act as a gutter, but you don’t want this width to be
variable—it must always be exactly 20px:

F {
 padding: 0 20px;
 width: 50%;
}

www.it-ebooks.info

http://www.it-ebooks.info/

54 Chapter 3

Maybe you can already see the problem. As you know, the CSS box
model makes padding, borders, and margins extra to the content’s dimen-
sions, so now these elements have a combined width of 100 percent, plus
40px, making them wider than their container.

A further problem when using percentage widths is that nesting elements
leads to some pretty weird numbers. For example, imagine you have an ele-
ment that you want to be 85 percent of the viewport, and inside that there’s
a child element you want to be 55 percent of the viewport. Unfortunately,
as percentages are relative, you can’t just set the width to be 55 percent; you
have to calculate 55 percent of 85 percent, which gives you this:

E { width: 85%; }
F { width: 64.70588%; }

Note that I stopped after the fifth decimal place. So working in this
way can involve a lot of calculations, and what’s even worse is the various
browsers round these numbers up or down in different ways, so pixel per-
fection can’t be guaranteed.

This drawback might be enough to put you off of working responsively,
but a few features in CSS3 should help eliminate these problems.

The box-sizing Property
You can, to some degree, work around the unit mixing problem that I just
mentioned by using the CSS box-sizing property. To explain, let me recap
the current code example: I have three columns with a 20px gap between
them, meaning the total width is greater than that of their parent, causing
them to overflow:

E, G { width: 25%; }
F {
 padding: 0 20px;
 width: 50%;
}

With box-sizing, you can change the boundary from where the width
is measured—so the stated width includes the border and the padding.
In this example, I can change element F so its width includes the padding,
using the border-box value for box-sizing:

F {
 box-sizing: border-box;
 padding: 0 20px;
 width: 50%;
}

Now the entire element F, including the padding, is 50 percent wide, so
the combined width of the elements is 100 percent again, making them fit
neatly inside their container.

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 55

Some people find box-sizing so handy that they advocate applying it to
every element, using the universal selector:

* { box-sizing: border-box; }

I think this is overkill and could cause unwanted difficulties, so my pre-
ferred approach is to apply it only where it’s actually required:

div, .etc { box-sizing: border-box; }

Using box-sizing does have its limitations, however; for one, it doesn’t
affect margins at all. To accommodate that, having some way to perform
dynamic calculations on length values instead would be better.

Dynamic Calculations on Length Values
When mixing units, a new value function eliminates all of the problems
mentioned in the previous section. This function is called calc(), and with
it, you can perform simple calculations using any numbered length units.
At its very simplest, the argument supplied to the function would be two
figures and a mathematical operator:

E { height: calc(10px + 10px); }

For a more practical illustration of what it can do, let’s return once
again to the simple three-column example. Say you now want to have a 4px
border on the left and right sides of the central column as well as the 10px
padding and 20px margin. You could use box-sizing to cover the border and
padding, as before, but this time also use the calc() function to subtract the
left and right margins from the width:

F {
 border: 4px solid black;
 border-width: 0 4px;
 box-sizing: border-box;
 margin: 0 20px;
 padding: 0 10px;
 width: calc(50% - 40px);
}

You could, instead of box-sizing, use further calc() values to set the
width and even mix up the values a little more by using different length
units. In the following example, I use em units for the margin and then an
extra calc() function to calculate the combined border, padding, and mar-
gin values, before subtracting them all from the total:

F {
 border: 4px solid black;
 border-width: 0 4px;

www.it-ebooks.info

http://www.it-ebooks.info/

56 Chapter 3

 margin: 0 20px;
 padding: 0 1em;
 width: calc(50% - calc(48px + 2em));
}

You’re not limited to using calc() only for width or height properties,
however; you can use it on any property or function where length values
are permitted.

viewport-relative length units
As mentioned previously, one problem with using percentages for widths is
the fact that they’re relative to their parent elements; that may not seem like
a problem at first, but it can soon become quite complex. A better approach
is to use a unit that’s relative to a fixed value, rather than a value inherited
from a parent; this is what the vh and vw units are for.

The v stands for viewport, and you may then be able to extrapolate
that h is for height and w for width. In other words, this unit is relative to
the dimensions of the viewport. Each number you use with this value is
equal to 1 percent of the respective length of the viewport. So to make an
element that’s half the height of the viewport use this:

E { height: 50vh; }

And as they’re always relative to the viewport rather than the parent,
that means no more long strings of numbers after the decimal point. If
you return to the earlier example of an element that’s 85 percent the width
of the viewport with a child element that’s 55 percent of the viewport, the
values are much more straightforward and easier to manage:

E { width: 85vw; }
F { width: 55vw; }

Two companion units, vmax and vmin, are also available; the first means
use the greater length of the viewport, whether height or width, and the
second means use the lesser value. So given a viewport with a resolution of
800×600, vmax would be equivalent to vw, and vmin equivalent to vh.

Root-Relative Units
Units that are relative to the dimensions are helpful, but if you want to use
a unit over which you have a little more control, you can use one that’s rela-
tive to a value that you set. The root em (rem) is a typographical unit, which
like em is based on the width of a capital M character; the definition is not
really important though, all you really need to know is that you can use rem
for relative sizing.

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 57

Where rem differs from em is that the latter is inherited, whereas the
former is fixed. For example, say you set a font size of 10px on the root of
a document:

html { font-size: 10px; }

If you want to make a p element that’s 12px in size, you could use either
one of them in this way:

p { font-size: 1.2em; }
p { font-size: 1.2rem; }

So far, so identical. But now presume that you have a b element inside
that p, like this:

<p>This is bold.</p>

And you want the b to be 13px in size. Because em is inherited, you would
have to divide the larger figure by the smaller to get the new font size:

p b { font-size: 1.08333em; }

Using em has the same two drawbacks you saw earlier in the chapter:
long, unwieldy numbers that become harder and harder to work with and
differences in rounding values between browsers. But the rem value, which
is always relative to the root, doesn’t have these problems, making it much
easier to work with:

p b { font-size: 1.3rem; }

Of course, although it’s a typographic unit, you can still use rem for
length values in the same way that many people use em.

noTe I’m using 10px as the root font size only for the sake of illustration, but you shouldn’t
do that in real life as it ignores the user’s custom font settings. Better to use 62.5 percent,
which equates to 10px for most users (16px is the default font size, 62.5 percent of which
is 10px) but still makes allowances for users with vision impairment.

Mobile First and Content Breakpoints
Two systems that I find really useful when building responsive websites are
mobile first and breakpoints. These aren’t hard and fast rules—you don’t have
to implement them if you think they’re not appropriate for what you’re
making—but certainly for browser-based websites I can’t imagine building
without them.

www.it-ebooks.info

http://www.it-ebooks.info/

58 Chapter 3

The mobile first methodology targets the smaller (and most probably
lower-powered) devices first and then adds layers of complexity to accom-
modate larger devices. What this means in essence is you start with a set of
styles that’s served to all devices—such as color, typography, iconography,
and so on—as well as the minimal layout rules required for a small-screen
device.

The next step is to add a media query that adds a new set of rules for
larger devices/agents; this might be a tablet, for example. For anyone using
an even larger device, add extra rules and so on, until you’ve catered to a
core set of devices. If you imagine your core devices are mobile, tablet, and
desktop, you’d end up with a set of style rules that looked something like this:

<link rel="stylesheet" href="base.css" media="screen">
<link rel="stylesheet" href="tablet.css" media="screen and (min-width: 481px)">
<link rel="stylesheet" href="desktop.css" media="screen and (min-width: 801px)">

The actual breakpoints you use are completely up to you; they depend on
the devices you want to optimize for and should be based on analysis of exist-
ing visitors, if that information is relevant and available to you. The examples
I’ve used here are simplistic and employed only to illustrate the method.

Luke Wroblewski is one of the leading proponents of this method. In
the introduction to his book Mobile First (A Book Apart, 2011), he says:

Designing for mobile first now can not only open up new oppor-
tunities for growth, it can lead to a better overall user experience
for a website or application.

The other approach to consider is setting breakpoints for content rather
than devices. With the huge range of web-enabled devices on the market
now (and plenty more to come in the future), the boundaries between
phone, tablet, laptop, and desktop are incredibly blurred. The phone I
own has a 4.65" screen. Samsung’s Galaxy Note has a 5.3" screen. Google’s
Nexus 7 has a 7" screen. At what point does the device stop being a phone
and become a tablet?

In my opinion, labels like phone and tablet (and especially portmanteau
terms like phablet) are fast becoming obsolete. As the functionality of all
our Internet-enabled devices converges, we’ll have to find a new vocabulary
to describe these things (although I’m not going to presume to know what
that new vocabulary will be).

My point in mentioning this is that the idea of building breakpoints
based on device dimensions may well be a snipe hunt. Think about mak-
ing breakpoints based on content instead; rather than thinking “how wide
should my content be on a tablet,” think “what’s the maximum width this
content can be before it becomes unreadable.”

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 59

What this means in practice is using media queries to change content,
not when an arbitrary device size has been reached, but when that content
becomes awkward. To illustrate what I mean, imagine I have a stylesheet
applied to wide viewports using a media query:

<link rel="stylesheet" href="foo.css" media="screen and (min-width: 1000px)">

And within that stylesheet I set the width of an article element to be
some 60 percent of the viewport’s width and a font to be 120 percent of
the root:

article { width: 60vw; }
article p { font-size: 1.2rem; }

Many studies have shown that for optimal readability the maximum
number of characters in a line of text is between 45 and 75, with 66 con-
sidered ideal, but if the user has a device with a very large viewport width,
the width of 60vw may well lead to lines of text that could double that.
Using the theory of content breakpoints, you may want to add an extra
rule within the larger device stylesheet to make the text larger on much
wider devices to restore some of the readability:

@media screen and (min-width: 1200px) {
 p { font-size: 1.4rem; }
}

Working in this way isn’t going to be easy—quite the opposite, in fact.
You will have to perform a lot of testing and analysis and make decisions
based on best practice and instinct. Some people, such as Thierry Koblentz
in his article “Device-Agnostic Approach to Responsive Web Design,” have
advocated using content breakpoints solely and not considering devices at all:

If we consider that content is king, then it makes sense to look at
it as the corner stone of the solution. In other words, we should
set break-points according to content instead of devices.

My opinion is that a combination of the two serves you best. As always,
experiment and find your own system.

responsive design and replaced objects
One sticking point I haven’t yet addressed is when you have objects on a
page—notably images, but also plug-ins like video and Flash. You can’t do
much with the latter (especially as Flash won’t be supported on most of your
users’ mobile devices anyway), but images present a unique set of obstacles
to building responsively, which I’ll come to shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

60 Chapter 3

Resizing most objects with percentages (or viewport-relative units if
you go that way) is not a problem; you could quite simply set the max-width
property to 100 percent to prevent the object ever being wider than its
container:

img {
 height: auto;
 max-width: 100%;
}

Notice that I also set the auto value on the
height property to maintain the object’s origi-
nal aspect ratio—having a fixed height and a
dynamic width (or vice versa) could distort the
object displayed. Sometimes preserving the
aspect ratio is going to mean empty spaces on
your page on either the horizontal or vertical
axis, as the object is too small for its container
(you can see an example of this in Figure 3-5).
If that’s the case, you can take advantage of the
object-fit and object-position properties to bet-
ter control how the object is displayed inside its
parent.

The first of those properties, object-fit,
controls how the object in question is resized
within its container. If you use the contain key-
word value, the object is resized so the whole
of it shows inside the container, with its aspect
ratio preserved and with empty space being
added on the horizontal or vertical axis as
 necessary. Alternatively, using the cover key-
word makes the shortest length of the object equal to the shortest length of
the container, with the longest length overflowing the container. Using the
fill keyword would resize the object to match the container’s dimensions.

In the example file object-fit.html, you can see these three keywords
compared. This example has three div elements with an img inside, each of
which has a unique id value. To this markup, I apply the following code:

img {
 height: 100%;
 width: 100%;
}
#obj-fill { object-fit: fill; }
#obj-contain { object-fit: contain; }
#obj-cover { object-fit: cover; }

The results, which you can see in Figure 3-6, are as follows: The first ele-
ment, #obj-fill, has been resized to the same dimensions as its parent, causing
it to be squashed horizontally and stretched vertically, and that distortion

Figure 3-5: An image
that’s been resized to keep
its aspect ratio, leaving
empty space around it.
(This image is “Evolution
of Expression!” by kabils:
http://www .fotopedia .com/
items/flickr-2680214376/.
It is used under a Creative
Commons license.)

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 61

obviously doesn’t look great; the element in the middle, #obj-contain, has
kept its original aspect ratio but been resized so the entire img fits inside its
parent, causing the “letterboxing” effect; finally, #obj-cover has also kept
its aspect ratio but been resized so the whole of its parent is covered. To
achieve this, the image has been scaled up and overflows the parent (I’ve
hidden the overflow in this example).

Figure 3-6: Different values for the object-fit property (left to right): fill, contain, cover

By default, the object sits dead center of its parent when object-fit is
applied, but you can change that with the object-position property. This
property works like the background-position property in that you can use
either two values to specify an offset from the top left of the container or
extra positional keywords (top, right, bottom, left, center) to offset from
another side. For example:

E { object-position: bottom 10px right 2em; }

The example file object-position.html shows three different values for the
object-position property. The markup is essentially the same as in the previ-
ous example, but the relevant CSS for this has been updated:

img {
 height: 100%;
 width: 100%;
 object-fit: contain;
}
#obj-1 { object-position: center top; }
#obj-2 { object-position: center bottom; }
#obj-3 { object-position: right; }

The result is shown in Figure 3-7. All three img elements have the contain
value applied to the object-fit property, but that’s just for the sake of illus-
tration and not required. The first image, #obj-1, is positioned in the hori-
zontal center of its parent and the vertical top; the next, #obj-2, is still at
the horizontal center, but now the vertical bottom; the last image, #obj-3,
has been cropped to portrait dimensions to better show it positioned to
the right of its parent.

www.it-ebooks.info

http://www.it-ebooks.info/

62 Chapter 3

Figure 3-7: Different values for the object-position property

The Image Problem
Although you’ve seen that resizing and positioning objects using respon-
sive techniques is quite straightforward, images are still a source of major
problems in responsive design for a number of reasons. Chief among them
is the question of file size; although not always the case, the chances are
good that someone using a mobile device will be using 3G or 4G and will
have reduced bandwidth compared to a desktop user. That being the case,
you don’t want to have to serve them a large, heavy image that they have to
download over their limited connection.

This is exacerbated by the increase in high-resolution screens. Standard-
resolution (1DPR) bitmap images (like JPG and PNG) can look quite low
quality on higher-resolution (2DPR) screens. HTML currently offers no way
to provide higher-resolution images to devices, and even if it did, you still
have the bandwidth problem. What’s the solution?

The HTML5 Responsive Images Solution
Unfortunately there is, as I write this, no native solution. Although a num-
ber of proposals have been put forward, none has been officially blessed
yet. The proposal that seems to be the most popular is to use a new picture
element, like so:

u <picture alt="Description of image subject.">
v <source srcset="small.jpg 1x, small-highres.jpg 2x">
w

</picture>

Three key activities are at work here: u is the new picture element with
the alt attribute describing the image (other standard attributes could also
be used here); v is the source element, which lists different source alterna-
tives using the srcset attribute—what you see here are two alternative image
sources, one for standard screens and one for higher-resolution screens,
using the number of the screens DPR, which you saw earlier in this chapter;
finally, w is the current img element, which you use as fallback for older
browsers that haven’t implemented picture yet.

www.it-ebooks.info

http://www.it-ebooks.info/

Device-Responsive CSS 63

W a r n i n g Remember this suggestion is only the most prominent as I write this; it may not be the
final syntax.

So this syntax allows for testing device resolution, but what about other
media queries? You can add those with further source elements:

<picture alt="Description of image subject.">
 <source srcset="small.jpg 1x, small-hi-res.jpg 2x">
 <source media="(min-width: 481px)" srcset="med.jpg 1x, med-hi-res.jpg 2x">

</picture>

In this example, you can see an extra source element using the media
attribute to set up a media query and serving a different set of images if
that query is true. I have to say that although this syntax works, I don’t
like it much; it’s repetitious for a start and, if used on a page with multiple
images, leads to maintainability issues. That said, no other simpler sugges-
tion has been proposed.

The WHATWG’s current proposal is to also use the srcset attribute, but
only on the img element. This option allows images to be served dependent
on screen resolution, but not with any other media query. I want to make
this really clear: This is not “official,” only a proposal.

Plenty of third-party solutions have been created, notable among them
Matt Wilcox’s Adaptive Images, which uses PHP and Apache to resize images
on the server and serve them to users depending on their device’s attri-
butes. But while this option works well, it does depend on a specific server
configuration that isn’t available to everyone and also adds a reliance on
JavaScript. This problem still waits to be solved natively.

summary
I’ve covered a lot of ground in this chapter, discussing media queries, device
resolution, the difference between physical and virtual pixels, responsive
web design, and the problem with responsive images. If you’re working
cross-device, this information should be useful at least, critical at most.

What I haven’t discussed in any great detail is how to actually create your
page layout—the way to present content at its best. A lot of work has been
done in this area in recent years, and in the next chapter, I talk about that.

further reading
First port of call for learning more about media queries should be Zoe
Mickley Gillenwater’s post “Essential Considerations for Crafting Quality
Media Queries”: http://zomigi.com/blog/essential-considerations-for-crafting-qual
ity-media-queries/.

The authority on mobile devices is PPK, and if you want to find
out more about physical and virtual pixels, I suggest you start with his

www.it-ebooks.info

http://www.it-ebooks.info/

64 Chapter 3

article “A Pixel Is Not a Pixel Is Not a Pixel”: http://www.quirksmode.org/
blog/archives/2010/04/a_pixel_is_not.html. Wikipedia has a list of com-
mon device resolutions and pixel density: http://en.wikipedia.org/wiki/
List_of_displays_by_pixel_density.

Patrick Lauke wrote an article about user-controlled DPR, “device-
PixelRatio in Opera Mobile”: http://my.opera.com/ODIN/blog/2012/07/05/
devicepixelratio-in-opera-mobile. Matt Wilcox’s article “The Responsive Design
Process” has a good glossary of key terms as well as plenty of practical
advice on the design side: http://mattwilcox.net/archive/entry/id/1078/.

Read more about the way that different browsers round decimal places
in John Albin Wilkins’s post “Responsive Design’s Dirty Little Secret”: http://
www.palantir.net/blog/responsive-design-s-dirty-little-secret/.

Paul Irish’s blog post “box-sizing: border-box FTW” sets out his
reasons for applying this property globally: http://paulirish.com/2012/
box-sizing-border-box-ftw/.

Luke Wroblewski’s book Mobile First is published by A Book Apart:
http://www.abookapart.com/products/mobile-first/.

To learn more about content breakpoints, read a pair of articles
from Australian web design studio Jordesign (http://www.jordesign
.com/blog/responsive-breakpoints-from-the-content-out/) and developer
Thierry Koblentz (http://coding.smashingmagazine.com/2012/03/22/
device-agnostic-approach-to-responsive-web-design/).

The history of the current favorite responsive images proposal, and
latest news on the state of its adoption, can be found on the website of
the Responsive Images Community Group: http://www.w3.org/community/
respimg/.

Find Matt Wilcox’s Adaptive Images tool at http://adaptive-images.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

4
n e W a P P r o a C h e S

T o C S S L a y o u T S

Once your markup is in place and you’ve
considered how to best optimize your web-

site or application for the devices they’ll be
used on, you can actually start to create the layout of
your website or application. Layouts have been quite
limited and formulaic using the features available in
CSS2.1. Even though clever designers and developers have pushed the use
of floats and positioning to their maximum, most websites use a variant of
the three-column grid, a pattern dictated largely by the limits of available
technology rather than the demands of the content those sites contain.

For the first time, CSS3 has new properties dedicated to the creation
of varied and flexible layouts, using much of the knowledge gained from
centuries of written and printed material while staying sympathetic to the
capabilities of electronic screens. With these new features, designers can
display content to best advantage, and an application’s user interface can
better respond to the devices that it will be used on.

www.it-ebooks.info

http://www.it-ebooks.info/

66 Chapter 4

W a r n i n g Although many of the new features in this chapter have already been implemented in
browsers, they should be considered experimental and subject to change until the W3C
has finished the standardization process. Detailed information on current browser
support is in Appendix A and will be updated on http://modernwebbook.com/.

Multi-columns
With their roots in scientific document markup, websites have followed
a pretty straightforward pattern when it comes to text: everything is based
on a single, unbroken column, like a document in a word processor or text
editor. This characteristic is largely because of the Web’s dynamic nature,
with variable font sizes and numbers of characters making it hard to control
positioning precisely. Print, with its fixable letter sizes and known character
count, allows for much greater flexibility in how text is laid out on the page.

Pick up just about any printed magazine or newspaper (younger read-
ers: ask your parents what those are) and you’re bound to find examples of
text being flowed into multiple columns—often two, sometimes three or
more. Columnar formats make it easy to fit more text on a page without
sacrificing readability.

Until recently, replicating this columnar style on the Web hasn’t been
possible without JavaScript, but the Multi-column Layout Module addresses
this shortcoming. To be honest, I think this feature is often more suited for
print than for screen, where scrolling up and down to read columns of text
can be a pain, but for some occasions, multiple columns is definitely the
better pattern to use.

Multi-column properties make flowing inline content into columns
straightforward. On the parent of the elements in question, you apply the
column-count property, with an integer value for the number of columns. For
example, this is the code you’d use to flow the content into three columns:

E { column-count: 3; }

The inline content is now in three columns, with a 1em gap between
each. If you prefer to be more prescriptive about your columns, you could
instead set their width using the column-width property with a length value:

E { column-width: 120px; }

This markup would make as many columns of 120px—plus the 1em gap
between each column—as would fit into the width of the parent element.
For example, given a parent width of 600px, four columns of 120px would
be created, plus a total gap of 3em between them, leaving some space to
spare. That spare space would then be equally distributed among each col-
umn, increasing the width until the full width of the parent is filled; that is,
the column-width value is treated as a minimum rather than an absolute.

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 67

Figure 4-1 shows a comparison of the two approaches. The upper
 example uses column-count to create three equal columns that fill the par-
ent’s width; the lower example has a column-width value of 120px, but the
actual width of the columns is slightly different as each has been resized
to better fit the parent.

Figure 4-1: Comparing columns laid out using the column-count (top) and column-width
properties (bottom)

You can also apply column-width and column-count to the same element.
When you do, the column-count value becomes the maximum number of
columns allowed. In this case, the logic is: “Make columns of 120px, up to
a maximum of three columns; then resize them as necessary to fill the par-
ent width.” You could also use the columns shorthand for this, where the two
values provided are column-width and column-count, respectively:

E { columns: 120px 3; }

When inline content is flowed into columns in a parent element with
no fixed height, the browser evenly distributes (as much as possible) the
number of lines in each column, possibly leaving some empty space at the
bottom of the parent element. But if the element has a set height, you can
choose how the text will flow, using the column-fill property.

The default value for column-fill is balance, which distributes the lines
evenly. The alternative behavior is for the columns to be filled sequentially,
to their maximum height, more than likely leaving a final column with
many fewer lines and lots of unused space. If this is your preference, you
can set it with the keyword value auto.

Gaps and Rules
As mentioned earlier, between each column is a default 1em gap. You can
alter that gap with the column-gap property. This property accepts a single
length value, and it increases the gap between each column to the specified
length. Here’s an example:

E { column-gap: 2em; }

www.it-ebooks.info

http://www.it-ebooks.info/

68 Chapter 4

You can also add lines between each column, known as rules, with the
column-rule property. The effect is essentially the same as the border property
from CSS2.1, and it requires the same three values—one for width, one for
style, and one for color—but it applies only to a single vertical rule, not to
all four sides. So to add a dotted, gray, 2px-wide rule between each column,
you’d use this code:

E { column-rule: 2px dotted gray; }

When used with column-gap, the gap width is distributed equally on
either side of the rule. Using this example, you would have a 2em gap: 1em
gap on each side of the 2px rule, as shown in Figure 4-2.

Figure 4-2: Controlling the gap and rule between columns

Spans and Breaks
Columns are fine when you’re flowing text and other inline content into
them, but at other times you will want to use objects or block elements that
don’t fit nicely into columns. A couple of related properties help in those
circumstances.

The first is column-span, best for when you want to break the flow of
the columns with a new element that spans all of them. This is a Boolean
property—an element spans either all columns or none. As such, the per-
mitted values are either all or none:

F { column-span: all; }

When the all value is used, the flow of the inline text stops before the
element it’s applied to and continues afterward, as shown in Figure 4-3.

When you have elements within a grid, you may encounter a situation
where the end of a column causes a break in the middle of that element.
This isn’t ideal if you have, for example, a subheading that could be broken
over two columns. To avoid this situation, a set of properties tries to control
where the breaks occur. These properties—break-after, break-before, and
break-inside—all work in more or less the same way.

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 69

Figure 4-3: The second subheading spans all the columns, interrupting the content’s flow.

I’ll use break-before as an illustration. The values you can apply to this
property (and its siblings) set whether a column break occurs before an ele-
ment. A value of column forces a break before the element (where relevant, of
course). A value of avoid-column (or just plain avoid—a marker that this prop-
erty is also available to other CSS features) forbids the browser to break
before the element unless absolutely necessary for page flow. The default
value auto lets the browser decide the best way to lay out the columns.

If this still sounds a little opaque, the example file column-breaks.html
shows the column value at work. Here is the code in this example:

h2 { break-before: column; }

The results are shown in Figure 4-4. In the upper example, the default
value auto means the subheadings are inline, in the middle of the columns.
But using the column value means that in the second example, the column
breaks always occur before the h2s, or subheadings.

Figure 4-4: The effects of the column value on the break-before property are clearly shown
in the lower example.

www.it-ebooks.info

http://www.it-ebooks.info/

70 Chapter 4

The break-after and break-inside properties work the same way, except
for the location where the break occurs. (Do you need me to tell you where
that is, or would you like to guess?)

flexbox
If you’re building more of an app than a content-rich website, especially if
you’re building an app with lots of buttons and options in the UI, or with
lots of form elements or interactive regions, you’ll find the Flexible Box
(Flexbox) module extremely useful.

The roots of Flexbox are in XUL, the language used to create the
Firefox browser’s layout, which should tell you that it’s aimed at user inter-
faces. Flexbox makes elements resize flexibly to better fit their available
space and reorders them or changes their orientation quickly.

The Flexbox syntax has undergone an awful lot of changes in the past
few years, but it’s finally quite stable and well implemented, so we can dis-
cuss it without worry!

Declaring the Flexbox Model
The first step to using Flexbox is to create the flex container. The flex con-
tainer is the parent element that will hold all the flex items (I’ll get to those
soon). To declare a flex container, simply use a new value for the display
property:

E { display: flex; }

Now you have your flex container, but what is it good for? That becomes
apparent when you add child items to the container. Example file flexbox.html
has two child items inside the container, using the following markup:

<div id="container">
 <div id="a">...</div>
 <div id="b">...</div>
</div>

In Figure 4-5, notice that the two elements are positioned horizontally
inside the container at equal widths, even though I haven’t used any floats
or positioning properties. This behavior is the default for flex items (chil-
dren of a flex container): They are laid out in a row inside the container. Or,
rather, they are laid out in the direction of the language of the document—
in left-to-right languages, such as English, the direction in a row is from left
to right.

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 71

Figure 4-5: Child items of a flex container are automatically laid out horizontally.

You can alter this direction by using the flex-direction property on the
container. Its default value is row, which gives the behavior just discussed,
whereas a value of column lays the items perpendicular to the direction of
text—in this case, into a column. (A few other permitted values are avail-
able, which I’ll cover shortly.):

E {
 display: flex;
 flex-direction: column;

}

This syntax makes your flex items look like the page layout default
behavior, where one item follows the next in vertical sequence.

Changing the Content Order
One of Flexbox’s other great capabilities is that you can quickly change the
order that items are displayed in, regardless of their order in the DOM. For
example, in the previous section, I had two items laid out in a row, but what
if I wanted to change them around so that #b came before #a?

You can do this quickly with the flex-direction property that I just dis-
cussed, using the new value row-reverse. This property reverses the order in
which the flex items are displayed, as you can see in Figure 4-6.

E { flex-direction: row-reverse; }

The column-reverse value does the same thing to flex items displayed in
columns: They are laid out in reverse order, vertically. Play around with the
values of flex-direction in the example file to see their different effects.

www.it-ebooks.info

http://www.it-ebooks.info/

72 Chapter 4

Figure 4-6: The row-reverse value quickly reverses the order of flex children.

By using the flex-order property, you can go beyond this reverse order-
ing to make completely bespoke ordering patterns. This property is applied
to the flex items, not the container, and the value is a number that creates an
ordinal group, so items with the same value are grouped together. The items
are ordered by their ordinal group: All items in the lowest numbered group
come first, followed by all items in the second-lowest numbered group, and
so on. Any items without a declared value are shown first because they have
the default value of 0.

Items with the same ordinal group number will subsequently be shown
in the order in which they appear in the DOM. This ordinal group ordering
may sound confusing at first, so I’ll illustrate using four flex items, marked
up like so:

<div id="container">
 <div id="a">...</div>
 <div id="b">...</div>
 <div id="c">...</div>
 <div id="d">...</div>
</div>

Without any explicit values being set, the children are displayed in the
order they appear in the DOM: #a, #b, #c, #d. But let’s reorder them by using
different values on the flex-order property:

#a { flex-order: 2; }
#b, #d { flex-order: 3; }
#c { flex-order: 1; }

With these rules applied, the items are laid out in this order: #c, #a, #b,
#d. Item #c comes first because it has the lowest ordinal group number, fol-
lowed by #a with the next highest, and then #b and #d—both are in ordinal
group 3, and #d comes last because it’s also later in the DOM order.

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 73

Alignment Inside the Container
Flex items with explicit dimensions might be smaller than their container,
but one of the other benefits of Flexbox is tight control over alignment and
placing.

Before getting into this fully, I’ll quickly explain the two different axes
used for alignment. The main axis goes in the direction that the items are
placed: By default, when the value of flex-direction is row, the main axis is
horizontal; when the value is column, the main axis is vertical. The cross axis
is the perpendicular: vertical when the flex-direction is row, horizontal when
it’s column. Figure 4-7 shows the difference.

flex-direction: row

Main axis

C
ross axis

flex-direction: column

Cross axis

M
ain axis

Figure 4-7: The main and cross axes depend on whether the flex children
are in rows or columns.

Now on with the alignment properties. Imagine you have a flex con-
tainer that is 600px wide, with three flex items that are each 150px wide. By
default, the three items display in a row, aligned to the left, with 150px of
unused space after them (as shown in the first row of Figure 4-8).

You can redistribute this unused space with the justify-content prop-
erty. This property accepts a series of keyword values that apply differently
depending on the direction of the flex parent (row, column, reversed row,
and so on). For the purpose of demonstration, let’s presume the standard
English left to right row. The default value is flex-start, which aligns all flex
items to the left of the parent with the unused space occupying the remain-
ing horizontal width to the right, as I mentioned in the previous paragraph.

The alternative values are: flex-end, which aligns the items to the right
of the container with the unused space to the left; center, which distributes
the unused space to either side of all items, centering the items in the con-
tainer; space-between, which adds an equal amount of space between each
item but none before the first or after the last item; and space-around, which
puts an equal amount of space on both sides of each item.

www.it-ebooks.info

http://www.it-ebooks.info/

74 Chapter 4

Have a look at flexbox-alignment.html and try changing the value of
justify-content to see its effect. Figure 4-8 shows a few different values for
comparison.

Figure 4-8: Different values for the justify-content property:
flex-start (top), center (middle), and space-around (bottom)

But what about alignment on the cross axis? After all, at times the height
of your flex items is less than the height of the flex container. (To avoid rep-
etition, I’ll continue to assume we’re dealing with items in a row.)

The property that applies is align-items, and the values are a little
different. The default is stretch, which makes the item the same height
as its parent. This value works only when no height has been specified on
the items, however; if a height has been specified, the default becomes
flex-start, which aligns the items to the top of the container. Of the other
values, flex-end aligns items to the bottom of the container; center to the
vertical center of the container, with equal unused space above and below;
and baseline aligns the items according to the baseline of the first line of
their content.

Have a look at flexbox-alignment.html and update the value yourself to see
the different effects in action. Figure 4-9 shows some different values at work.

Figure 4-9: Alignment on the cross axis is controlled with dif-
ferent values for align-items: stretch (top), flex-end (middle),
and center (bottom).

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 75

To control the alignment of individual items, use the align-self prop-
erty. This property applies to the item, not the container, but the values are
the same as align-items, and they have the same effects (although on the
selected item only—sibling items remain unaffected).

Adding Some Flexibility
You’ve seen how items can be aligned and ordered, but so far a better name
for the module might be Versatile Box. What about the titular flexibility?
This comes in the shape of dynamic growing or shrinking of items to better
fit the container and is provided by a new property called flex. This prop-
erty is applied to items, rather than the container, and takes three values:

E { flex: 1 2 150px; }

The flex property is actually a shorthand, and each of the values are for
a further property; in order, they are flex-grow, flex-shrink, and flex-basis.
If I wrote the same rule out again using all three properties, it would be:

E {
 flex-grow: 1;
 flex-shrink: 2;
 flex-basis: 150px;
}

But what do these properties actually do? I’ll start by explaining
flex-basis, which essentially acts like (and takes precedence over) the
value of the width property. The flex-basis property is like a “preferred
width” property, meaning these boxes will be flexible, but their flexibility
will be based on this number.

In the example code I’ve used so far in this section, I’ve included three
flex items, each with a flex-basis of 150px, in a flex container that is 600px
wide, leaving 150px of unused width. This is where the other properties
come in.

The flex-grow and flex-shrink property values are basically a ratio.
Ignore flex-shrink for a moment, and note that each item has a flex-grow
value of 1. This value means the 150px of unused width is divided up using
the ratio 1:1:1—that is, equally. Fifty pixels are added to each element so
they each become 200px wide, filling the container. But what if I changed
the flex-grow value for one of the children?

#a, #b { flex: 1 2 150px; }
#c { flex: 3 2 150px; }

Now the ratio has changed to 1:3:1, meaning the 150px will be distributed
between the items in that ratio; for every 1px that’s distributed to items #a
and #b, 3px is distributed to item #c. Therefore #c becomes 240px wide, and
items #a and #b are 180px wide. Changing the flex-grow value alters that
ratio and the flexibility of your items.

www.it-ebooks.info

http://www.it-ebooks.info/

76 Chapter 4

For example, Figure 4-10 shows the effect of a change to flex-grow; in
the upper example, all items have an equal value of 1; in the lower example,
item B has a value of 3, meaning it grows proportionally larger.

Figure 4-10: A greater flex-grow value means item B in the
lower example becomes proportionally larger than its siblings.

The flex-shrink property works in reverse. If you keep the same items as in
the examples but reduce the width of the container to 300px, the combined
width (or flex-basis) of the items creates a 50px-surplus width, which
is removed from each of the items in the ratio given by flex-shrink: 2:2:2.
Notice this is an equal ratio, so it’s actually the same as 1:1:1 or 5:5:5.
The result is the same: each item is reduced in width by 50px to fit the
container.

Now what if you change the flex-shrink value of one of the items?

#a, #b { flex: 1 2 150px; }
#c { flex: 3 3 150px; }

Now item #c is reduced by 3px for every 2px from items #a and #b; it
flexes to 86px in width, compared to its siblings’ 107px.

This flexibility is really useful when you have a series of elements that
must fit into variable spaces, such as a user interface on an app that has to
work across multiple devices. Flexbox is also good for those times when you
don’t know how many interface elements you’ll have, but you know they
should all be proportional regardless.

Wrap and Flow
Even with the extra flexibility provided by Flexbox, at times you will
have too many items to fit comfortably into one row (or column) of a con-
tainer. Should this occur, you can break items onto multiple lines using
the flex-wrap property. Its default value is nowrap, which preserves all the
items on the same line, but a value of wrap makes the items break onto
extra lines if required:

E { flex-wrap: wrap; }

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 77

The wrap value makes new lines below the first (or to the right in column
view), but an alternative value of wrap-reverse changes the direction of the
cross axis so new lines appear above (or to the left) instead. Figure 4-11
compares the two different values.

Figure 4-11: Comparing values for the flex-wrap property. The
upper example has a value of wrap, so element C appears in
a new line below; whereas in the lower example, the value is
wrap-reverse, so element C is on a new line above.

You can combine flex-wrap with flex-direction in the shorthand
flex-flow property. To set a column with multiple lines and a reversed
cross axis, use this:

E { flex-flow: column wrap-reverse; }

When items wrap over multiple lines, you can control their alignment
with the align-content property. This property works like the justify-content
property but on the cross axis. It has the same possible values plus one extra,
stretch, which resizes the items to fill all unused space. Figure 4-12 compares
two different values.

Figure 4-12: Alignment on the cross axis when flex items are
wrapped is controlled with align-content: center (top) and
space-between (bottom).

www.it-ebooks.info

http://www.it-ebooks.info/

78 Chapter 4

Although you can create entire page layouts with Flexbox, that’s not
really what it’s intended for, and you would probably be hacking it around
to get the exact layout you want. A better option is to use a dedicated set of
page layout properties, and that’s where the Grid Layout module comes in.

grid layout
Grids are a fundamental design element. Simple grids have been used by
calligraphers since medieval times and the modern typographic grid since
the second half of the 20th century. For a few years now, efforts have been
made to bring grid-based design to the Web, with a number of frameworks
being created that use floats, padding, and margins to emulate the possi-
bilities of print.

Recently browsers have begun to implement a native CSS Grid Layout
system, which provides a series of properties designed specifically to cre-
ate grids on screen, meaning the developer no longer has to hack them
together from existing properties and behaviors. But before I introduce
the new grid syntax, I’ll explain some of the terminology used in the Grid
Layout module. Even if you’re a designer familiar with using grids, you should
take time to understand these terms, as the terminology used in CSS grids
is distinct from that used by designers.

Here I’ve defined the key terms used in the module:

Grid element The container element that acts as the boundary and sets
the dimensions of the grid.

Grid items Each child element that is placed onto the grid is known as
an item.

Grid lines The dividing lines between rows and columns; these lines
are notional, not actual.

Grid tracks The shorthand name for both rows and columns. Each
column or row created in the grid is referred to as a track. Tracks are
the spaces between lines.

Grid areas Each intersection of a column and a row creates an area.
Think of these like cells in a table.

A grid is created by first setting a number of lines on the grid element
to create a series of tracks. Grid items are then positioned in the grid using
the tracks as coordinates and either fit into an area or span a series of areas,
as shown in Figure 4-13.

If you’ve used spreadsheet software such as Excel, a grid should be easy
to visualize. The grid lines —the lines between cells—define a series of rows
and columns that are numbered for coordinate placement. (If you haven’t
used spreadsheet software or you don’t know about typographical grids and
are confused about what all this means, don’t worry—I explain it in stages.)

n o T e The syntax I’m using in this section is what shipped with Internet Explorer 10;
however, the specification has undergone changes since then. The new syntax will
be listed later in “The September 2012 Grid Layout Syntax” on page 84.

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 79

Grid track
(column)

Grid track
(row)

Grid element

Grid area

Grid line

Grid item

Figure 4-13: A simple 3×3 grid showing the core terms used in the CSS Grid
Layout syntax

Declaring and Defining the Grid
The first step in creating a grid is to declare the grid element. As explained
in the introduction to this section, this is the container element that is used
as the grid’s foundation: Its dimensions will be the limits of the grid, and
all the grid properties will be applied to it. The grid element is declared
with the existing display property, using the new value grid:

E { display: grid; }

Next, you define the grid tracks with the grid-columns and grid-rows
properties. The value for each of these properties is a length unit, which
sets the width of the column or height of the row. As a simple first example,
here’s how to create two columns, one that is 75 percent of the width of the
grid element and one that is 25 percent:

E { grid-columns: 75% 25%; }

You’re not confined to percentages here; any length units are permit-
ted, and a new length unit, fraction (fr), has been created especially for
defining grids. One fr means one equal share of the remaining space. In
the previous example, you could use the fr unit instead of percentages to
achieve the same result:

E { grid-columns: 3fr 1fr; }

www.it-ebooks.info

http://www.it-ebooks.info/

80 Chapter 4

But fractions really come into their own when mixed with other units.
For example, say you want to have one fixed-width column and two equal
and dynamic columns as part of a responsive layout. Using fr is perfect for
this. In the following code, three columns are created: one at 15em wide
and the remaining two at half of the remaining width each:

E { grid-columns: 15em 1fr 1fr; }

Adding rows is done in the same way, using all of the same possible
units. Say, for example, I want to create three rows: The first is 100px high;
the second has a value of auto, so it is as high as the content contained
within it; and the third is 15em high. Here’s the code to create these rows:

E { grid-rows: 100px auto 15em; }

Putting all these properties together lets you fully define your grid. As
a simple example, let’s create a basic grid of three columns and three rows,
for a total of nine cells. Here’s the code for that:

E {
 display: grid;
 grid-columns: 1fr 4fr 1fr;
 grid-rows: 100px auto 15em;
}

The columns of this grid are distributed in the ratio 1:4:1, and the rows
are 100px at the top, 15em at the bottom, with a central row of automatic
height to accommodate all the content within it. The grid will look some-
thing like Figure 4-14.

1fr 4fr 1fr

100px

auto

15em

Figure 4-14: A simple 3×3 grid

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 81

Repeating Grid Lines
The simple grids defined in this chapter so far are good for learning
and for some real-world situations, but you’ll often want to use quite com-
plex grids for finer control over content. A 12- or 16-column grid is fairly
common place, and each of those columns usually has a gutter (empty space)
between itself and its neighbor. But using the Grid Layout syntax, even a
6-column grid with gutters can be quite repetitive:

E { grid-columns: 1fr 10px 1fr 10px 1fr 10px 1fr 10px 1fr 10px 1fr; }

Now imagine how repetitive that would be with 16 columns! To get
around this problem, you can use the repeat() function to manage repeti-
tion. This function takes two values: an integer that sets the number of
 repetitions and then the grid line values to be repeated:

E { grid-columns: 1fr repeat(5, 10px 1fr); }

This defines one track, one fraction wide, and then repeats a pattern
alternating 10px and 1fr, five times, matching the code in the previous
example.

Internet Explorer 10 uses syntax from an older version of the spec,
where the number of repetitions is placed after the parentheses in square
brackets. If you’re building apps for the Windows 8 UI, use this syntax:

E { -ms-grid-columns: 1fr repeat(10px 1fr)[5]; }

Placing Items on the Grid
To place an item on the grid, you assign it a cell reference using the
grid-column and grid-row properties. Each property takes a single whole
number as a value, which refers to a track (either a column or a row). For
e xample, to place an item in the cell positioned in the second column,
 second row, you would use this code (the result is shown in Figure 4-15):

F {
 grid-column: 2;
 grid-row: 2;
}

The default value of both grid-column and grid-row is 1, so omitting either
would place the item in the first row or column. Given the following code,
the item would be placed in the cell in the second column of the first row,
as you can see in Figure 4-16.

F { grid-column: 2; }

www.it-ebooks.info

http://www.it-ebooks.info/

82 Chapter 4

Figure 4-15: An item placed on the grid in the second column, second row (grid lines
added for clarity)

Figure 4-16: An item placed on the grid in the second column, first row (grid lines added
for clarity)

By default, the item is sized into the nominated cell, but you can expand
the item’s size by making it span multiple cells in rows or columns. You do
this with the grid-column-span and grid-row-span properties, each of which,
again, takes a single whole number value that determines how many tracks
the item should span. For example, here’s an item that spans the first three
rows of the first column:

F { grid-row-span: 3; }

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 83

Remember, you don’t need to define grid-column and grid-row in this
instance, as they both default to 1. The item is placed in the first column of
the first row—right where you want it—and it spans all three rows, as shown
in Figure 4-17.

Figure 4-17: An item on the grid spanning three rows of the first column (grid lines added
for clarity)

Alignment and Stacking
By default, the items you place on the grid are positioned so their top-left cor-
ner is at the top-left corner of the designated cell, but you can change this
default positioning with the grid-column-align and grid-row-align properties.
These properties each take a series of keyword values (center, end, start, and
stretch). These values set the alignment of the item within its cell.

The center value obviously aligns the item to the horizontal or vertical
center of the cell, whereas start and end depend on the direction of writing
in your document. For those of us using English and other left-to-right
languages, start aligns the item to the left or top of the cell, and end to the
right or bottom. The stretch value makes the item expand to fill the whole
width or height of the cell.

To show how these values work, take a look at the example file grid-align
.html. You’ll find a grid of three equal cells with an identical item in each.
I’ve positioned each differently, using the following code:

#a { grid-row-align: end; }
#b { grid-row-align: stretch; }
#c { grid-row-align: center; }

As you can see, each item is aligned differently within the row: #a is
aligned to the end (bottom), #b stretches to fill the whole cell, and #c is
 vertically centered. You can compare the results in Figure 4-18.

www.it-ebooks.info

http://www.it-ebooks.info/

84 Chapter 4

Figure 4-18: Each item is aligned differently within its cell with the grid-row-align property.

As you’re placing items into the grid, you may find that items overlap in
the same cell. By default, items are stacked in DOM order, with items that
appear later in the DOM stacked on top of items that appear earlier, as in
the following markup, for example.

<div id="a">...</div>
<div id="b">...</div>

If the div items #a and #b were placed into the same cell, the latter
would show above the former because it’s later in the DOM order. You can
change this order by using the z-index property (from absolute positioning
in CSS2.1). For example, to have item #a appear above #b, you do this:

#a { z-index: 10; }

(I’ll discuss another approach to dealing with stacking conflicts later in
“Exclusions and Grids” on page 204.)

The September 2012 Grid Layout Syntax
As I mentioned previously, the syntax of the Grid Layout module was updated
after Internet Explorer 10 had implemented its version. The updated speci-
fication still has draft status and is a long way from being approved, and as I
write this, the new syntax has yet to be implemented in any browser.

The good news is that the core concepts remain the same, and the
main changes come in the form of new and updated property names. For
example, when defining a grid, the grid-columns and grid-rows properties are
now known as grid-definition-columns and grid-definition-rows, respectively.
That was easy, but pay attention to the next part.

The roles played by the grid-column and grid-row properties are now filled
by grid-column-position and grid-row-position, although the former properties

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 85

still exist as shorthands: grid-column is shorthand for grid-column-position
and grid-column-span, and grid-row is shorthand for grid-row-position and
grid-row-span. That makes more sense than it might seem to at first.

Other shorthands include the following: grid-position is shorthand
for grid-column-position and grid-row-position; grid-span for grid-column-span
and grid-row-span; and grid-area for (deep breath) grid-column-position,
grid-row-position, grid-column-span, and grid-row-span (or grid-position and
grid-span, if you prefer shorthands of shorthands).

W a r n i n g Remember that because the spec is still draft, this syntax is not necessarily final. Updates
will be posted on this book’s companion website, http://modernwebbook.com/.

On the Grid Layout Terminology
The terminology used in the Grid Layout module is really quite distinct
from that of the typographic grids used by designers, a fact that has caused
some designers to be quite vocal about their displeasure. Mark Boulton,
one of the chief instigators in explaining the importance of grid systems on
web pages, wrote an open letter to the W3C about the terminology used in
the Grid Layout module:

I’m confused as to the need to invent new terminology with
regards to grids that have existed for centuries. I’m also a little
concerned that the mental model this terminology builds is one
more similar to tables and spreadsheets (where these terms could
be interchangeable) than to grids and layout.

Tab Atkins, of Google and the CSS Working Group, was forthright
about why CSS grids seem to have more in common with tables than typo-
graphic grids:

Because Grid Layout is basically just the good parts of table lay-
outs, without the shitty parts, so we reused the same terminology.

Grid Template
The Grid Layout module offers another way to define grids. Though as of
this writing no browsers have implemented grid templates or indicated that
they will, I think it deserves a brief explanation because it’s such a clever
and different approach.

The grid-template property allows you to define grid areas by using a
series of unique identifiers in strings of text. Each identifier represents an
area, and each string represents a row. For example, to make a grid of one
row with three columns, you would use this:

E {
 display: grid;
 grid-template: 'a b c';
}

www.it-ebooks.info

http://www.it-ebooks.info/

86 Chapter 4

To make multiple rows, add more strings, and make cells span rows
and columns, add an extra instance of the letter in the direction you want
to span. For example, in the following code, cell a will span two rows, and
cell b will span two columns. I’ve formatted the strings to make it easier for
you to visualize how these will appear:

E {
 display: grid;
 grid-template:
 'a b b'
 'a c d';
}

To place an item in a grid declared with a template, just use the letter of
the cell as a value for the grid-area property. For example, to place an item
in cell b, use this code:

F { grid-area: 'b'; }

As mentioned, I have no idea whether grid templates will ever see the
light of day in a browser, but they offer an interesting way to approach the
creation of simple grids.

The further future
The three key layout modules I've covered in this chapter already provide
a seismic shift in the way we’ll lay out web pages in the near future, but
looking still further ahead, there are even more incredible modules being
proposed. As these are in varying states of proposal and stability, I’ve cho-
sen not to cover them in this chapter, but I include them in “Even Further
Future Layouts” on page 205. If rich, dynamic web layouts excite you (and
why wouldn’t they?), I think you’ll be quite satisfied with that section.

summary
This chapter has covered the many new approaches now available to you as
a developer when you decide how to best lay out your pages. From the easy
creation of grids to DOM-independent UI layouts via unique and dynamic
text reflowing, the new methods should make the old three-column layout a
thing of the past. Combining each of the new methods with the power of the
media queries introduced in Chapter 3 means you can now make flexible,
dynamic layouts and interfaces that are custom-tailored for every device.

And the future of CSS layouts looks even more exciting. Although as
I write this many of the proposals and specifications are still in a state of
high flux, the new possibilities mean that in five years we’ll have whole new
sets of tools at our fingertips that will change the paradigms of website and
application development.

www.it-ebooks.info

http://www.it-ebooks.info/

New Approaches to CSS Layouts 87

further reading
The ever-dependable MozDev has a really clear introduction to multiple
columns, “Using CSS multi-column layouts,” at https://developer.mozilla.org/
en-US/docs/CSS/Using_CSS_multi-column_layouts/.

The Flexbox syntax has changed so often that almost every current
online resource is out-of-date! That said, I recommend Stephen Hay’s
article “Learn You a Flexbox for Great Good!” at http://www.the-haystack
.com/2012/01/04/learn-you-a-flexbox/, even though it refers to an outdated
syntax, as Stephen’s knowledge of CSS layouts is second to none.

The best explanation of the Grid Layout module, at least in
regard to the IE10 implementation, is contained in the “Internet
Explorer 10 Guide for Developers”: http://msdn.microsoft.com/en-us/
library/ie/hh673533%28v=vs.85%29.aspx/.

Read Mark Boulton’s open letter on the subject of grid
terminology at http://www.markboulton.co.uk/journal/comments/
open-letter-to-w3c-css-working-group-re-css-grids.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
M o d e r n J a v a S C r i P T

The third column of front-end web devel-
opment, along with markup and style, is

behavior, which on the Web is performed by
JavaScript. The activity around HTML5 and

its related APIs has also brought many new features
and (dare I say it?) improvements to this scripting
language, making JavaScript both easier to use casually for front-end
 developers and more powerful for those who really like to get into the
hard-core mechanics. In the first section of this chapter, I look at some of
those features.

But probably the biggest change in the world of JavaScript has been not
in the language itself but in the number of libraries and frameworks that
use it. There’s been a Cambrian explosion of libraries, and in the second
section of this chapter, I present my Burgess Shale—a small but illuminat-
ing snapshot of what’s available.

www.it-ebooks.info

http://www.it-ebooks.info/

90 Chapter 5

new in Javascript
From many new ways of DOM traversal to a whole new range of events,
JavaScript has changed plenty in the past three or four years. If you don’t
actively follow or keep up with the JavaScript community, you can easily
miss it.

In this section, I run through some of the new features of JavaScript,
chosen on the massively unscientific basis of how useful I think they are.
This section includes by no means everything that’s new in the language—
just a handful of methods, attributes, and events you might use often in
your day-to-day web builds.

The async and defer Attributes
A browser’s default behavior is to load all page elements in order and exe-
cute JavaScript files as soon as they’re encountered, which blocks HTML
parsing. Sites on slow connections, or those that include a lot of script to
execute, can lag considerably. This is generally why best practice is to link
to script files toward the end of your document, after the rest of the page
has loaded.

A solution that prevents this blocking has been developed, however.
The defer attribute, when added to the script element for external files
(that is, when the src attribute is present), downloads scripts without paus-
ing the parser but delays executing them until the HTML has finished
 loading. As defer is a Boolean attribute, no value is required:

<script src="foo.js" defer></script>

HTML5 has another new option, which is to execute the scripts asyn-
chronously. As with deferred loading, external scripts are downloaded with-
out pausing the parser; the difference is that the parser then executes those
scripts as soon as possible. This approach is a kind of “best of both worlds”
approach: not pausing the parser while downloading but not waiting until
the end before executing. This option requires the async attribute, which is
also Boolean:

<script src="foo.js" async></script>

One drawback is that your scripts may very well be executed in a differ-
ent order from the way you call them in the document, so you can’t rely on
dependencies between script files. But if order is not an issue and the script
is self-contained, this option may be best.

You can see the difference in the way the three approaches work in
Figure 5-1. The first row shows default behavior, where HTML parsing is
paused while the scripts are loaded and executed. The second row shows

www.it-ebooks.info

http://www.it-ebooks.info/

Modern JavaScript 91

deferred execution, where the scripts are loaded without pausing the parser
and then executed when the DOM is ready. In the final row, the parser still
isn’t paused while the script is loading, but it is paused as it then executes.

HTML parsing
Script loading
Script executing

<script>

<script defer>

<script async>

Figure 5-1: The effects of deferred and asynchronous loading of JavaScript files

The addEventListener Method
The standard way to add event handlers to elements used to be with the
series of event properties, such as element.onclick or element.onmouseout,
which were fine as things went but had the drawback of allowing only a
 single handler of that type on each element. The W3C created a more
 flexible approach in the form of the addEventListener() method.

Honestly, this method isn’t all that new, but only fairly recently, after
being implemented in IE9 in 2011, has addEventListener() had a good level
of support across browsers. A generic method, addEventListener() takes two
mandatory and one (semi-)optional parameter:

el.addEventListener(type,listener,useCapture);

The type parameter is the type of event to listen for; the listener is the
object that gets notified when the event occurs and is most commonly a
function; and useCapture is a Boolean to indicate event bubbling. I won’t go
into detail on the latter parameter, as describing event bubbling is beyond
the scope of this book, but although the parameter is supposedly optional,
you have to include it, as certain older browsers will throw an error if it’s
not present. If you don’t need it or know what it is, set useCapture to false
and don’t worry about it.

Here’s a quick example of a simple use of addEventListener(); this code
listens for a click event and runs an anonymous function to log a message
into the console when that even occurs:

el.addEventListener('click', function () {
 console.log('Click!');
},false);

www.it-ebooks.info

http://www.it-ebooks.info/

92 Chapter 5

Even at this basic level, addEventListener() is useful enough, but it’s even
more valuable than it might seem, as you can use it to add multiple events
of the same type to an element. This means you can use scripts from dif-
ferent sources without worrying about accidentally overwriting an event
listener. The next example shows two named functions applied to the same
element; each could be in a completely different script file yet still be exe-
cuted when the element is clicked:

el.addEventListener('click', foo, false);
el.addEventListener('click', bar, false);

Using named functions (as I’ve done in this example) rather than
anonymous functions is a good idea. Named functions are simply easier
to refer to elsewhere in your scripts, which is essential when you want to
remove event handlers as discussed in “Removing Event Listeners” on
page 93.

The event Object

The addEventListener() method returns an object with details of the event
after it’s been fired. You can access this object using an anonymous func-
tion with a unique identifier as an argument. This identifier will be the
name of the object. In this example, I call it ev and log it to the console so
you can see the result:

el.addEventListener('click', function (ev) {
 console.log(ev);
},false);

Figure 5-2 shows the event object output in Firebug. You can see a num-
ber of different property-value pairs, giving quite substantial information
about the event as it happened (there’s more information off-screen too).

This method also works with named functions; you just have to supply
the unique id value as an argument when defining the function:

var foo = function (ev) {
 console.log(ev);
};
el.addEventListener('click', foo, false);

Among the event object’s more useful properties is currentTarget, which
holds information about the element that the event occurred on; you can
then apply behavior to that element easily, as in this code where the element
that is clicked has its color set to #F00 :

el.addEventListener('click', function (ev) {
 ev.currentTarget.style.color = '#F00';
},false);

www.it-ebooks.info

http://www.it-ebooks.info/

Modern JavaScript 93

Figure 5-2: Some of the information contained in the object created by a click event

The event object is also useful when you want to stop a default action
from occurring on an element. For example, you may attach an event to an a
element that contains a link, but you don’t want the browser to follow the link
before the function attached to the event has run. Use the preventDefault()
method for this:

el.addEventListener('click', function (ev) {
 ev.preventDefault();
 ...
},false);

Removing Event Listeners

Sometimes you want to remove a handler from an element to prevent it
from firing again. You remove handlers with the removeEventListener()
method, which has the same three parameters as addEventListener():

el.removeEventListener(type,listener,useCapture);

To remove an event, you have to provide removeEventListener() with the
exact parameters used by the addEventListener() method, which is why I
mentioned previously the importance of using named rather than anony-
mous functions. The following code illustrates what I mean; first an event
listener is added to run the function foo, and then the listener is removed by
using exactly the same parameters:

el.addEventListener('click',foo,false);
el.removeEventListener('click',foo,false);

www.it-ebooks.info

http://www.it-ebooks.info/

94 Chapter 5

You can remove anonymous functions from event handlers, but these
methods are being deprecated in the latest revisions of JavaScript, so steer-
ing clear of them is best.

The DOMContentLoaded Event
The old way to initiate scripts when a page had finished loading was to use
the load event, but this method had the drawback of only firing after every
resource—images, stylesheets, and so on—had fully loaded, which could
sometimes lead to quite a delay. Developers then created a custom event,
domready, which fires when the DOM has loaded but before the resources.

The domready event was quickly adopted by many JavaScript libraries; it
began to be adopted natively in browsers as DOMContentLoaded; and it is now
standardized in HTML5. DOMContentLoaded is fired on the document object like so:

document.addEventListener('DOMContentLoaded', function () {...}, false);

Notably, the behavior layer of the site can be initiated much sooner,
meaning the user can start exploring your site more quickly—especially
useful over slow connections or for image-heavy pages that could take
some time to load. If you have scripts that you want to run only when every
resource has finished loading, you can continue to use load.

Input Events
The massive rise in the number of devices with touch-enabled (whether fin-
ger, stylus, or sausage) input has meant the creation of a new series of events
to cater to them. Although click events are still fired by touch input, simply
relying on them is not sufficient, as there are major differences in the ways
that mouse- and touch-enabled devices operate. For example, when a user
clicks his or her mouse button, a slight pause occurs as the browser waits to
see if the action is a single or double click. This delay is small but noticeable
on touch screens and makes them appear to be unresponsive.

The W3C is currently considering two different input event models:
Touch Events is aimed squarely at touch input, has been under active devel-
opment for some time, and is already implemented in some browsers, but
this model has been criticized in some quarters and may also fall foul of
some existing patents; Pointer Events is a new proposal for a unified input
model that has been accepted for consideration by the W3C but not yet for-
mally approved or implemented.

Which—if either—model eventually becomes the standard remains to
be seen, although indications are that Pointer Events is preferred. Given the
uncertainty, I’ll just briefly explain how each works.

www.it-ebooks.info

http://www.it-ebooks.info/

Modern JavaScript 95

Touch Events

The Touch Events Level 1 specification has four events:

•	 touchstart fires when a finger (the word I’ll use from now on to avoid
repeating the word “sausage”) touches the screen.

•	 touchend fires when the finger is removed from the screen.

•	 touchmove fires when a finger moves between two points on the screen.

•	 touchcancel fires when the user agent interrupts a touch or when the
finger leaves the active area.

Touch Events Level 2, still in development as I write this, introduces two
additional events:

•	 touchenter fires when a finger already on the screen moves over the tar-
get element.

•	 touchleave fires when the finger moves out of the target area without
leaving the screen.

To closely parallel a mouse click, you probably want to use the touchend
event, which fires when the finger is lifted from the screen, denoting that
the user has completed his or her action:

el.addEventListener('touchend', function () {...}, false);

Every time a touch event fires, it creates a TouchEvent object, which con-
tains more information about the event. This information includes TouchList,
an object containing the touches child object, which holds information about
how many fingers are touching the screen, obviously useful for multitouch
events. Bear in mind that each touch creates a touch event, and when using
multitouch, each touch event includes all the preceding touches. So the
TouchList object created when the first finger touches the screen holds infor-
mation about touch 0; the TouchList created by the second finger holds
information about touches 0 and 1; the TouchList of the third finger about
touches 0, 1, and 2, and so on.

Pointer Events

As I mentioned, Pointer Events presents a unified approach to creating
events regardless of the actual input mechanism—whether finger, mouse,
stylus, or other. This approach is similar to DOM Mouse Events in the
way that it records an action’s stages but uses the agnostic pointer* events:
 pointerdown, pointerup, pointercancel, pointermove, pointerover, and pointerout.
For example, to fire an event when the pointer is released, use pointerup:

el.addEventListener('pointerup', function () {...}, false);

www.it-ebooks.info

http://www.it-ebooks.info/

96 Chapter 5

When fired, each event creates a pointerEvent interface that combines
properties from the MouseEvent interface—currentTarget, coordinates where
the event occurred, and so on—with a series of new properties, including the
type of pointer used (pointerType), the amount of pressure applied, and the
pointer’s tilt (where relevant).

Without an implementation, I can’t give any examples of these events in
use, but certainly the spec makes sense and seems to logically extend existing
events and be more general—and, therefore, more useful—than dedicated
Touch Events. Although not confirmed as I write this, Pointer Events seems to
be the specification that the W3C will develop. In the meantime, a number of
community-built libraries exist to fill the functionality gap: among the multi-
tude, the PointerEvents polyfill is the one to consider.

CSS Selectors in JavaScript
Selecting elements from the DOM used to be a little problematic. You had
getElementById() and getElementsByTagName(), but too often getting the exact
elements you wanted involved a lot of DOM traversal or filtering. Libraries
like jQuery (I get to this in “Pointer Events” on page 95) solved this prob-
lem with methods that allow CSS selectors as arguments:

var foo = $('p.foo');

The obvious benefit this brings soon fed back into JavaScript through
two new native methods: querySelector() and querySelectorAll(). Both work
in a similar way, taking CSS selectors as arguments; the difference is that
querySelector() selects only the first matched element, so its result is a single
node, whereas querySelectorAll() matches all instances of the element, so its
result is returned as a NodeList:

var foo = document.querySelector('p.foo');
var foo = document.querySelectorAll('p.foo');

In Figure 5-3 you can see the results
of the different selectors logged in to
the console; querySelector() is the first
result, querySelectorAll() the second.

You can use any complex selector
or series of selectors with these two
methods; the only proviso is that they
can’t be relative selectors—that is,
they can’t begin with a combinator
like > or +. This argument is, there-
fore, invalid:

var el = document.querySelectorAll('+ h2');

Figure 5-3: Comparing the results of
querySelector() and querySelectorAll()

www.it-ebooks.info

http://www.it-ebooks.info/

Modern JavaScript 97

A proposal to resolve this problem is a pair of similar methods called
find() and findAll(), which would work in basically the same way but allow
selectors relative to the target. To create a valid version of the previous
code, use this:

var foo = el.findAll('+ h2');

Although these aren’t really vital methods, they make DOM traversal a
little easier, so I hope to see them broadly adopted soon.

The getElementsByClassName() Method
One fairly big (and surprising) gap in using JavaScript to access the DOM was
a method for selecting elements by their class name. As with DOMContentReady,
this absence led developers to write their own custom scripts to carry out that
task, many of which consolidated around the name getElementsByClassName().
This solution was also standardized in HTML5, and the method is now
present natively in modern browsers. getElementsByClassName() takes a single
string value and returns a NodeList of all elements that have a class name
matching the string:

var el = document.getElementsByClassName('foo');

You can also match multiple class names by separating them with spaces
in the string; the following code selects all elements that have a class name
of both foo and bar:

var el = document.getElementsByClassName('foo bar');

Interacting with Classes
With the introduction of the classList object, JavaScript has also made
interacting with the class names of elements easier. Every element in the
DOM has an associated classList, which is just what it sounds like: a list of
all the classes applied to that element. To get the classList of an element
and log it to the console, do this:

var el = document.querySelector('.foo');
console.log(el.classList);

The classList object contains a series of properties and methods for
manipulating the classes. You can query for the existence of a class with the
contains() method, which returns true if the provided class is present and
false otherwise. You add a class with the add() method and remove one with
remove(). The following code tests for the class name foo, adds it if it isn’t
present, and removes it if it is:

if (el.classList.contains('foo') {
 el.classList.remove('foo');

www.it-ebooks.info

http://www.it-ebooks.info/

98 Chapter 5

} else {
 el.classList.add('foo');
}

A quicker way to do this is with the toggle() method; toggle() simply
removes a class if it’s present or adds it if it’s not:

el.classList.toggle('foo');

Javascript libraries
JavaScript libraries are collections of prewritten scripts that aim to reduce
the cost of developing applications, and in the past few years, their number
has exploded—to the point where you will rarely work on a large project
where no libraries are used. From light single-purpose libraries to extensive
frameworks, the range is truly wondrous. Whatever you want to do with
JavaScript, the odds are good that someone has already written a library
for it.

At times writing your own scripts from scratch is the best approach,
especially if you don’t want the overhead of some libraries’ large file size.
But when working on large teams—when having everyone work to the
same standard is advantageous—or when you need to get something into
production quickly or for many other reasons, a library is the way to go.

Here I briefly introduce four JavaScript libraries that are useful for
front-end developers. Bear in mind that I am barely scraping the surface
of what’s available, and just about every developer you talk to will have his
or her own favorite (and probably won’t be shy about telling you why it’s
superior).

To use each library, in most cases you only have to download or link to
a copy of the library and place any code that relies on the library in subse-
quent files. Remember the warning about using the async attribute in this
case. Where installation is more complicated, each library’s documentation
will have full instructions.

W a r n i n g Using JavaScript libraries can add significant weight to your page and adversely
affect loading times. Think carefully before you use them, especially if you’re building
sites that may be accessed by visitors on mobile devices, where performance can be a
major issue.

jQuery
I would say almost certainly you have heard of jQuery, as it has quickly
become a de facto standard for working on the Web. In August 2012, it
was estimated that it’s used on some 50 percent of the top 1 million web-
sites. If you’re comfortable with jQuery and happy that you know all about
what it does, you can skip this section. For everybody else, I provide a short
overview.

www.it-ebooks.info

http://www.it-ebooks.info/

Modern JavaScript 99

jQuery is a JavaScript framework that simplifies the way you write scripts,
abstracting common functions and providing a unified experience across
all browsers. It works by creating a set of methods that require simple argu-
ments from the author but perform some quite complex tasks. Here’s a
simple example, which I’ll talk through in a second:

$(document).ready(function () {
 $('h1').addClass('foo');
});

The first line is required to use jQuery; it acts basically like the
DOMContentLoaded event, running the anonymous function when the DOM
is ready. The second line contains a simple jQuery statement: The first
part is a CSS selector that selects a node or group of nodes for the action
to be applied to, and the second part is a method that states the action to
be applied. In this case, a class of foo will be added to all h1 elements.

Using the selector at the beginning of the statement can sometimes
confuse people, as we construct sentences in English in the opposite way;
it’s like saying “apple I will eat.” If it makes it easier for you to remember,
imagine this is how Yoda would say it.

Using jQuery doesn’t limit you to DOM traversal or manipulation;
it does plenty more as well. For example, you can use the on() method to
attach events to elements—on() is like addEventListener with a few extra
advantages, one of which is you can specify multiple event listeners to be
added to a single element. In this example, an anonymous function runs
whenever any h1 element is clicked or touched:

$('h1').on('click touch',function () { ... });

Another fantastic feature of jQuery is its ability to chain methods in
sequence, mixing selectors and actions to create long statements. The fol-
lowing code is a little more complex than I’ve used so far, so see if you can
work out what it does before I explain it:

$('.foo').on('click', function (ev) {
 $(ev.currentTarget).find('.bar').css('background-color','#f00');
});

Here’s the sequence: first, add a click event listener to all elements with
the class of foo; next, run an anonymous function when that event is fired,
and assign the event object to the variable named ev; in that function, find
all elements with a class of bar that are children of the element that the event
was fired on and change their background color to #f00.

The range of different methods that jQuery gives you access to is far
greater than I could possibly list here, so I suggest you take a look at the
documentation, which is absolutely exemplary—especially for an open
source project.

www.it-ebooks.info

http://www.it-ebooks.info/

100 Chapter 5

jQuery has a companion called jQuery Mobile, which might at first sound
like a mobile-optimized version of the library, but it’s not that simple; jQuery
Mobile is actually an extension to jQuery that provides cross-platform widgets
and styles, as well as new events and methods that take advantage of the new
capabilities provided by mobile devices. It requires the jQuery library to run,
meaning extra weight is added to your pages.

If you need a lightweight mobile-optimized library, you may want to
consider an alternative such as Zepto.js, which features a jQuery-compatible
API but is only 25 percent of its size. jQTouch is a library that provides many
of the same features as jQuery Mobile but weighs in much lighter and is
compatible with both jQuery and Zepto, although its browser support may
not be as broad as that of jQuery Mobile. I advise you to evaluate each fully
to find which one is best suited to your purposes.

YepNope
I’ve already covered (back in Chapter 3) using media queries in CSS and
JavaScript for loading resources depending on device dimensions, but what
about all the other variable capabilities and functionality you could be test-
ing against? Maybe you want to load resources depending on whether a
browser has support for the console or a certain API (you’ll read more
about those in Chapter 6). You could write custom functions that test
for each critical dependency in turn, but using a conditional loader like
YepNope.js might be a better option.

The idea of YepNope is incredibly simple: You give it a condition to
test and then specify a resource to be loaded depending on the result. As
a simple example, let’s test to see whether the browser has a console and
load a virtual one if it doesn’t:

yepnope({
 test: window.console,
 nope: 'foo.js'
});

You can see what’s going on here pretty easily. The yepnope function is
called. It has two properties: test, which is the condition to return either
true or false; and nope, which is a resource to load if the value of test is false.
So if window.console is supported, do nothing; if not, load foo.js.

A few further properties are available, such as yep, which specifies
a resource to run if the value of test is true; both, which loads a resource
regardless of the value of test; and callback, which runs a function when
the test is complete. Let’s make the previous code example a bit more
 complex by adding a few of those in:

yepnope({
 test: window.console,
 yep: 'bar.js',
 nope: 'foo.js',

www.it-ebooks.info

http://www.it-ebooks.info/

Modern JavaScript 101

 both: 'foobar.css',
 callback: function () { ... }
});

Here I’m running the same test as before but now loading bar.js if test
is true, foo.js if it’s false, and foobar.css regardless of the result. When the test
has finished, the anonymous function runs.

Any test that returns a result of true or false can be run in test, but where
YepNope.js really comes into its own is when it’s combined with Modernizr—
the next library I discuss.

Modernizr
Browser support for experimental features, whether HTML, CSS, or JavaScript,
can be quite variable, and providing safe fallbacks if a feature isn’t present
in a user’s browser is not always easy. Modernizr, which runs a series of tests
for features you define and then returns a result of true or false, addresses
this problem.

Modernizr can be used in two principal ways: the first is through CSS.
Say, for example, you want to check whether Flexbox properties are avail-
able in the user’s browser. First, you build a custom version of Modernizr
with the build tool, being sure to click the flexbox option and include a link
to the generated file in the head of your document. When the document
has finished loading, a class of either flexbox or no-flexbox (depending on
whether it’s available) is added to the html element.

That class could then be used to style the page depending on the level
of Flexbox support; for example, you might have something like this, which
makes an element display as a block by default but as a flex container for
supporting browsers:

.foo { display: block; }

.flexbox .foo { display: flex; }

The second use of Modernizr is for conditional JavaScript. Each test
you run creates a property for the Modernizr object, which has a true or false
value for use with conditional functions; in this example, the code inside
the curly brackets executes if Flexbox is supported:

if(Modernizr.flexbox) { ... }

If you want to extend it to load external resources, you can use the
Modernizr.load() method, which may look somewhat familiar if you’ve been
paying attention so far:

Modernizr.load({
 test: Modernizr.flexbox,
 nope: 'foo.js'
});

www.it-ebooks.info

http://www.it-ebooks.info/

102 Chapter 5

Yes, it uses YepNope.js as a basis. All the properties of YepNope can be
used in Modernizr. You can use Modernizr.load() alone, or, if you’re using
YepNope already, use the Modernizr object as the test:

yepnope({
 test: Modernizr.flexbox,
 nope: 'foo.js'
});

Both work the same way. Your preference depends on your configura-
tion, but whichever you opt for, the flexibility that Modernizr gives you is
incredibly useful for building enhanced applications with graceful fallback.

The Modernizr concept of conditional style rules is so useful that it’s
been adopted into CSS itself, using the @supports at-rule. @supports works
similarly to media queries, but rather than testing for media features, it
tests for CSS property-value pairs. For example, to test whether Flexbox
is supported in a browser, use this rule:

@supports (display: flex) { ... }

The declarations inside the curly brackets are applied to any browser
that supports the flex value for the display property. You can read more
about @supports and its associated API in “Feature Queries” on page 207.

Mustache
If you’re building without a server backend or just want to get some static
templates built quickly, you may want to consider a client-side template sys-
tem. Preeminent among these is Mustache, a logic-less syntax that has proved
its popularity by being ported to just about every major web programming
language including, most appropriately for our purposes, JavaScript.

A logic-less syntax is one that doesn’t use any logical statements—no if,
else, or or—instead using a system of tags that can be replaced by values.
Here’s a basic example, substituting a single tag for a value:

var view = {
 name: 'Bonobo'
}
var output = Mustache.render('The {{name}} is funny.', view);

You can see that I’ve created an object called view, with a single prop-
erty name, which has the value 'Bonobo'. In the output variable, I use the
Mustache.render() method to create the tag replacement. This method has
two arguments. In this example, the first is a string of text that contains
the name property in double curly brackets (or “mustaches”)—this is the
syntax for a tag. The variable inside it, known as the key, will be replaced
by the property value with the same name from the object that is the

www.it-ebooks.info

http://www.it-ebooks.info/

Modern JavaScript 103

second argument of the method—in this case, view. The final output will be
the text 'The Bonobo is funny.', which you can see in Example 1 in the file
mustache.html.

Using Mustache you can easily create sections of content that repeat—
known, cleverly, as sections. Sections are useful for, for example, cutting the
repetition needed for creating lists or tables. The first step is to set up the
property-value pairs in the view object:

var view = {
 'apes' : [
 {'name':'Bonobo'},
 {'name':'Chimpanzee'},
 {'name':'Gorilla'},
 {'name':'Orangutan'}
]
}

The syntax of a section is like a tag, but it has an opening and closing
tag marked with # and /, respectively. In the following code, I output the
section called apes with the text or HTML to be repeated:

var templApe = '{{#apes}}The {{name}} is funny.{{/apes}}';

Here I’ve created a new variable called templApe, which contains the
repeating section. I could have added this directly inside Mustache.render(),
but keeping my template rules separate in this way is more manageable.
Anyway, I have my content and my template, so now I render it, outputting
a list of four statements saying that each of the great apes is funny:

var output = Mustache.render(templApe,view);

You can see the result of this in Example 2 of mustache.html.
Sharing resources between pages makes templates more useful. The best

way to share resources is to call an external file. Doing this is quite simple in
Mustache; you just load the results of a JSON file into the view variable:

var request = new XMLHttpRequest();
request.open('GET', 'apes.json', true);
request.onreadystatechange = function () {
 if (request.readyState != 4) { return; }
 var view = JSON.parse(request.responseText);

u var templApe = '{{#apes}}The {{name}} is funny.{{/apes}}';
v var output = Mustache.render(templApe,view);

};
request.send();

u and v are essentially the same as the previous example; the only dif-
ference is that the source of view is now data that has been parsed from the
file apes.json, which contains the same information as the previous example
but is held externally. You can see the output in Example 3 of mustache.html.

www.it-ebooks.info

http://www.it-ebooks.info/

104 Chapter 5

This example may look complicated because of the script required for
getting the external data with an XMLHttpRequest; if you prefer to use jQuery,
you could get the same result in fewer lines of code:

$.getJSON('json/apes.json', function (view) {
 var templApe = '{{#apes}}The {{name}} is funny.{{/apes}}';
 var output = Mustache.render(templApe,view);
});

This function is the same, but jQuery has abstracted away the XHR and
JSON to make it all much simpler and to work cross-browser, which is what
jQuery does best.

If you don’t like the idea of keeping templates in script, separate from
your main content, you can use templates in the markup instead. Use inline
script tags, with a type of text/template, with the template markup inside. For
example, you could do this:

<div id="ape_area">
 <script id="apeTpl" type="text/template">
 <ul id="apes">
{{#apes}}The {{name}} is funny.{{/apes}}

 </script>
</div>

The script is similar to the previous example, except now you use a
reference to the ID of the script tag, #apeTpl, to declare the template and
overwrite the inline script to remove it from the markup at the time of
rendering:

$.getJSON('json/data.json', function (view) {
 var templApe = document.getElementById('apeTpl').innerHTML;
 var output = Mustache.render(templApe,view);
 document.getElementById('ape_area').innerHTML = output;
});

Example 4 of mustache.html shows this in action. Whether you use the
inline templating system comes down to your personal preference, but
Mustache offers the advantage of making these alternative approaches
available.

Polyfills and shims
A shim (sometimes called a shiv) is a piece of code that intercepts an API
call and provides a layer of abstraction, and a polyfill is a specific type of
shim that adds support for new or experimental features in browsers that
don’t support them natively. CSS multi-columns aren’t supported in many
older browsers, for example, so a multi-column polyfill would use JavaScript
to replicate their functionality in those browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Modern JavaScript 105

The idea behind a polyfill is that it happens invisibly; other than includ-
ing a link to the polyfill file, no (or very little) more should be required from
the author. In the case of multi-columns, the CSS to create the columns
should be all you need. Of course, multi-columns create a dependency on
JavaScript so you have to consider an acceptable fallback state, but that
should be part of your everyday workflow anyway.

Honestly, there are far too many polyfills covering far too many features
for me to even think about providing a list here. The Modernizr wiki holds
a regularly updated list that should be your first port of call; just think about
the feature you want to consider a polyfill for, and it will most likely be on
that page.

Modernizr and YepNope are actually perfect for providing polyfills only
to browsers that need them, improving the performance for pages that don’t.
To return to the multi-column example once more, you might use this to
load the polyfill only for browsers that don’t support the feature:

Modernizr.load({
 test: Modernizr.csscolumns,
 nope: 'css3-multi-column.js'
});

Polyfills cause performance considerations, and they do create a depen-
dency on JavaScript, so I suggest carefully considering the potential draw-
backs before deciding to use them.

Testing and debugging
If you want a safe environment in which to experiment and test your scripts,
resources like JS Bin and JS Fiddle are ideal. Both work in basically the same
way, but as I tend to use JS Bin, I’ll cover it in this section.

JS Bin provides up to five columns for you to run your scripts in: The
first three columns are for providing the HTML, CSS, and JavaScript that
you’ll use for your tests; a Console is available for logging results and infor-
mation; and an Output panel shows the results of the tests.

A list of popular JavaScript libraries is available in a drop-down menu,
and choosing any of them automatically adds them to the head of your
example markup. You can also manually add any libraries that aren’t in the
list (such as YepNope).

The ability to version your tests, creating snapshots (known as milestones)
of all the columns, makes it easy to branch your tests and try different
approaches. Best of all, you can also share your tests with other users so
they can add their own changes in a separate version, making collabora-
tion really easy. You can make your tests public for showing off the results,
and if you create an account, you can save your tests and revisit them in the
future.

www.it-ebooks.info

http://www.it-ebooks.info/

106 Chapter 5

summary
In this chapter, I’ve, by necessity, rushed through the basics of new JavaScript
DOM and API features; there really are too many for me to cover, so I’ve
chosen what I think are the most useful. I’ve focused on those that improve
the loading of scripts, those that facilitate easier DOM traversal and manipu-
lation, and those that make events work better, especially for touch-enabled
devices.

I’ve also covered some popular and useful JavaScript libraries, from the
power of the ubiquitous jQuery to the utility of YepNope, Modernizr, and
Mustache. I strongly encourage you to find out more about the many differ-
ent libraries that are available and find ones that suit you best.

further reading
The illustration in Figure 5-1 is adapted from Peter Beverloo’s blog: http://
peter.sh/experiments/asynchronous-and-deferred-javascript-execution-explained/.

Christian Heilmann wrote an in-depth introduction to JavaScript
events for Smashing Magazine : http://coding.smashingmagazine.com/2012/
08/17/javascript-events-responding-user/. The PointerEvents library is hosted
on GitHub at https://github.com/toolkitchen/PointerEvents/.

The jQuery website, http://jquery.com/, has instructions for getting
started, while the excellent documentation is at http://docs.jquery.com/
Main_Page. Statistics about jQuery usage are from the blog post “ jQuery
Now Runs on Every Second Website” at http://w3techs.com/blog/entry/
jquery_now_runs_on_every_second_website/.

All mobile libraries are fully documented: jQuery Mobile at http://
jquerymobile.com/, Zepto.js at http://zeptojs.com/, and jQTouch at http://
jqtouch.com/.

YepNope.js is available from http://yepnopejs.com/, and you’ll find a
good introductory tutorial at http://net.tutsplus.com/tutorials/javascript-ajax/
easy-script-loading-with-yepnope-js/.

Modernizr’s website, http://modernizr.com/, has full documentation
plus a configurable build system and also plays host to “The All-In-One
Entirely-Not-Alphabetical No-Bullshit Guide to HTML5 Fallbacks”
(their title, not mine) at https://github.com/Modernizr/Modernizr/wiki/
HTML5-Cross-browser-Polyfills/.

Christopher Coenraets wrote an excellent introductory tutorial to
Mustache, although bear in mind that the syntax has changed a little:
http://coenraets.org/blog/2011/12/tutorial-html-templates-with-mustache-js/. The
full documentation of Mustache.js is at https://github.com/janl/mustache.js/.

Many different experimenting and debugging tools are available, and
both http://jsbin.com/ and http://jsfiddle.net/ are excellent.

www.it-ebooks.info

http://www.it-ebooks.info/

6
d e v i C e a P i S

In the previous chapters, I’ve discussed
some of the many APIs that have been

introduced as part of the HTML5 process,
such as microdata and Touch Events. But

there is a further range of APIs that, although not
part of the spec, are certainly related; and these APIs
offer something extremely attractive to developers in
the multi-screen world: access to the device itself.

In this chapter, we take a look at some device APIs—from the new
location and spatial features in portable devices to file and storage options
across most modern browsers. Obviously not all APIs are going to be avail-
able on every device—knowing the position in three-dimensional (3-D)
space of a television is of little practical use—but many APIs are useful
across a broad range of user agents.

www.it-ebooks.info

http://www.it-ebooks.info/

108 Chapter 6

This is a curated list of those APIs I feel will be most practical, and the
introductions to many are, for reasons of space, quite brief; often, the APIs
will be much more extensive, and although I’ll note where I think the scope
is available for you to learn more, I urge you to discover for yourself the
capabilities and possibilities of accessing the device through JavaScript.

n o T e : The examples and demos in this chapter are interactive; I’ve included screenshots and
illustrations in some cases, but if there’s one chapter you really should download the
example files for, it’s this one.

geolocation
Location-based services are handy in all sorts of ways, from helping users
with mobile devices find their way around to providing tailored informa-
tion about the region they live in. The Geolocation API accesses a device’s
location services, which use GPS, wireless, or cell tower data to provide
information about the device’s location that will be used by your location-
based apps.

Location data obviously involves privacy concerns, so in most (if not all)
browsers, users must give explicit permission to access this data, usually in
the form of an on-screen prompt that allows them to opt in or out of pro-
viding their location, as shown in Figure 6-1.

Figure 6-1: The Geolocation opt-in prompt in Chrome for Android

The data is held in the geolocation object, a child of window.navigator,
which you can access using the getCurrentPosition() method:

navigator.geolocation.getCurrentPosition(function(where){
 // Do something
});

A successful callback returns an object (I’ve called it where) containing
a coords child object. This child object has a series of properties pertaining
to the user’s position, such as his or her altitude and heading, but the ones
I’m really interested in are latitude and longitude. In this code, I’m accessing
these properties and displaying them in an alert:

navigator.geolocation.getCurrentPosition(function(where){
 alert(where.coords.latitude + ',' + where.coords.longitude);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Device APIs 109

You can try this for yourself in position-current.html; my results are shown
in Figure 6-2.

Figure 6-2: Coordinates obtained through the
 geolocation object, referencing the street I live on;
please don’t stalk me.

Occasionally an error is returned when looking for the position; an
optional error callback can check for this. The following code creates two
functions, one for successful location and one for an error:

var geo = navigator.geolocation,
 lcn_success = function(where) { ... },
 lcn_error = function() { ... };
geo.getCurrentPosition(lcn_success, lcn_error);

Sometimes a GPS device can take a little while to find the user’s exact
position, and, of course, the user may also be on the move, so instead of
a one-off location, you can choose to watch the user’s position, receiv-
ing updated results when location data changes. You do this with the
watchPosition() method, also on the geolocation object, which works in the
same way as getCurrentPosition():

navigator.geolocation.watchPosition(function(where){
 console.log(where.coords.latitude,where.coords.longitude);
});

To cancel watching a user’s position, use the clearWatch() method with
the unique ID created by the watchPosition() method; in this example, the
process ends when the user clicks the #stop link:

var geo = navigator.geolocation,
 watchID = geo.watchPosition(...),
 endWatch = document.getElementById('stop');
endWatch.addEventListener('click', function () {
 geo.clearWatch(watchID);
}, false);

In position-watch-clear.html, you can see a demo of this in action. Open
the page in a mobile device and move around, and you should see the loca-
tion update as your device gets a better fix on your location.

www.it-ebooks.info

http://www.it-ebooks.info/

110 Chapter 6

orientation
The Orientation API detects changes to the device’s position in 3-D space—
that is, movement up and down, left and right, and clockwise and counter-
clockwise. This movement is measured with an accelerometer, and the
devices that are most likely to contain one are those that are most portable;
mobile phones and tablets move frequently so are very likely to have one,
laptops move to some degree so may contain one, and desktops and TVs
move so infrequently that it’s very unlikely they’ll have an accelerometer
or access to this API.

Using orientation events opens up new possibilities for interaction and
navigation; some apps already provide an option to control page scrolling
by tilting the device forward or backward, and navigation between tiles or
pages by tilting to the left or right.

Before detailing the API, I should talk about three-dimensional axes
(you can skip this paragraph if you know about them already). All move-
ment in three dimensions has three directions, or axes, commonly referred
to as x, y, and z. If you hold a device in front of you now (or imagine you
are doing so), the x -axis runs from left to right, y from top to bottom, and
z toward you and away from you, as shown in Figure 6-3. Movement is mea-
sured along these axes from the center of the device and is either positive
or negative: Bringing the device closer to you moves it positively along the
z-axis and away moves it negatively. Lowering the device toward your feet
moves it negatively along the y -axis and moving it to your right moves it
positively along the x -axis.

Figure 6-3: Movement along the three-dimensional axes
(This image is taken from the Mozilla Developer Network
[MDN] article, “Orientation and Motion Data Explained”:
http:// developer .mozilla .org/en-US/docs/DOM/Orientation
_and_motion_data_explained/. It is used under a Creative
Commons license.)

To detect the movement along each axis, use the deviceorientation
event on the window object. This event fires every time the device moves
and returns an object with a series of useful orientation properties:

window.addEventListener('deviceorientation',function (orientData) {
 ...
}, false);

www.it-ebooks.info

http://www.it-ebooks.info/

Device APIs 111

The three key properties that are germane to movement are alpha, beta,
and gamma. Each is measured with a number representating degrees of rota-
tion, although some are constrained within set limits.

•	 alpha measures rotation around, not movement along, the z-axis—that
is, if the device were laid flat on a table, clockwise or counterclockwise
movement. The value of alpha is a number from 0 to 360.

•	 beta is rotation around the x -axis, which you can picture as tipping the
top edge of the device toward or away from you. beta has a value range
of –180 (tip toward you) to 180 (tip away from you).

•	 gamma is rotation around the y -axis or tilting the device from side to side.
The value of gamma ranges from –90 (tip left) to 90 (tip right).

As a very simple example, the code in the following script uses
deviceorientation to detect changes to the orientation and then logs the
three values to the console:

window.addEventListener('deviceorientation',function (orientData) {
 console.log(orientData.alpha,orientData.beta,orientData.gamma);
}, false);

In the example file orientation.html, you can see a slightly different ver-
sion that updates the text on the page when orientation changes; open it
on a mobile or tablet device and move the device around to see the page
content update.

fullscreen
We all know the Web is an immensely powerful distraction machine, so
sometimes providing an option to focus only on the content at hand is use-
ful. This functionality is provided by the Fullscreen API, which allows you
to expand any element to fill the entire screen of the device, rather than
just the browser viewport. This is especially handy for large-screen devices,
for instance, when playing video to provide the “lean back” experience of
television.

Before setting up this script, check whether the browser has a full-
screen mode. You can do this with the Boolean fullScreenEnabled attribute:

if (document.fullScreenEnabled) { ... }

Fullscreen mode is called with the requestFullScreen() method. As this
introduces potential security risks (an often-quoted example is an attack
website that fools you into thinking that you’re seeing something else and
copies your keystrokes), many devices provide an on-screen prompt to
make sure you give permission to enter fullscreen mode. If you grant that
permission, the element the method is called on scales up to 100 percent
of the device screen’s height and width.

www.it-ebooks.info

http://www.it-ebooks.info/

112 Chapter 6

In the next code snippet, a click event listener is applied to the element
#trigger, which, when fired, will put .target into fullscreen mode, as long as
permission is granted. You can see this for yourself in the file fullscreen.html,
which is illustrated in Figure 6-4.

var el = document.querySelector('.target'),
 launch = document.getElementById('trigger');
launch.addEventListener('click', function () {
 el.requestFullScreen();
}, false);

Figure 6-4: An element launched into fullscreen mode with an on-screen alert in Firefox
for Android

The browser should offer a means to exit fullscreen mode, but you
can also provide your own with the exitFullScreen() method. The next
code block shows a function that uses this method to leave fullscreen mode
when the enter key is pressed. Note two further things in the code: First, it
uses the fullscreenchange event, which is fired whenever an element enters
or leaves full screen mode; and second, it relies on an if statement using the
fullScreenElement attribute, which returns either information about the ele-
ment that is in fullscreen mode or null if there is none.

document.addEventListener('fullscreenchange', function () {
 if (document.fullScreenElement !== null) {
 document.addEventListener('keydown', function (e) {
 if (e.keyCode === 13) {
 document.exitFullScreen();
 }
 }, false);
 }
}, false);

www.it-ebooks.info

http://www.it-ebooks.info/

Device APIs 113

When an element has been put in fullscreen mode, you might want
to style it (or its children) a little differently. It’s proposed that you can do
this with a new dedicated CSS pseudo-class, which will be called either
:fullscreen or :full-screen:

.target:full-screen {}

vibration
The Vibration API makes a device vibrate, providing some haptic feedback
for your users. This API actually used to be called the Vibrator API, but I’m
sure you don’t need me to tell you why that name was changed very quickly.
Obviously not all devices are capable of vibrating, especially larger ones, so
this API is decidedly more useful in mobile devices.

The API is extremely simple, requiring only the vibrate() method on the
navigator object. The value supplied to vibrate() is a figure representing the
number of milliseconds for the device to vibrate; for example, to make the
device vibrate for one-fifth of a second after the user has completed a touchend
event, use this code:

document.addEventListener('touchend', function () {
 window.navigator.vibrate(200);
});

You can also use an array of values that alternate between vibrations
and pauses; that is, the odd-numbered values are vibrations and the even
values are pauses. In this example, the device vibrates for 200ms, pauses
for 200ms, and then vibrates for 500ms:

document.addEventListener('touchend', function () {
 window.navigator.vibrate([200,200,500]);
});

Vibrating runs down the battery more quickly, so use this API with
caution. You can manually stop a vibration by using a 0 or an empty array
value. In this code, the device will begin to vibrate for 5 seconds when the
touch event starts, and then stops when the event ends:

document.addEventListener('touchstart', function () {
 window.navigator.vibrate(5000);
});
document.addEventListener('touchend', function () {
 window.navigator.vibrate(0);
});

www.it-ebooks.info

http://www.it-ebooks.info/

114 Chapter 6

You can try the API for yourself
in the example file vibration.html, even
though obviously you’ll need to open
it on a mobile device with vibration
capabilities if you want to actually feel
the vibrations. If you don’t have one
on hand, Figure 6-5 shows a recon-
struction of the experience.

battery status
One of the key concerns with portable devices is knowing their battery
status. Mobile devices can get as little as seven or eight hours out of a full
charge, whereas a laptop is lucky to get more than three or four hours.
Knowing the status of the device’s battery can be important before you
begin power-hungry processes or commence to download large files.

You can get information about the battery with the Battery Status API,
which brings a set of attributes on the navigator.battery object. For example,
to find out if the battery is currently charging, you can use the charging attri-
bute to get a true or false value:

var batteryStatus = navigator.battery.charging;

To find the current battery level, you can use the level attribute, which
returns a value from 0 (empty) to 1 (fully charged). The following code is a
simple demonstration of this in action:
The battery level is obtained and its
value used as the value of a meter ele-
ment (which will be fully introduced in
Chapter 8), and the current charging
status (‘Charging’ or ‘Discharging’) is
appended below it. You can try it your-
self in the example file battery.html. The
result is shown in Figure 6-6.

var el = document.getElementById('status'),
 meter = document.querySelector('meter'),
 battery = navigator.battery,
 status = (battery.charging) ? 'Charging' : 'Discharging';
meter.value = battery.level;
meter.textContent = battery.level;
el.textContent = status;

The battery object has two further attributes: chargingTime and
dischargingTime. Both of these return a value, in seconds, of the remain-
ing time until the battery is fully charged or fully discharged, respectively.

Figure 6-6: A meter element showing
the remaining battery level of my
device, plus its charging status

Figure 6-5: The Vibration API in action
(reconstruction)

www.it-ebooks.info

http://www.it-ebooks.info/

Device APIs 115

The Battery Status API also has a series of events that fire when a
change to any of the attributes is detected: chargingchange, chargingtimechange,
dischargingtimechange, and levelchange. The following code uses chargingchange
to detect a change to the device’s charging status and fires an alert if the
status has changed:

var status,
 battery = navigator.battery,
 chargeStatus = function () {
 (battery.charging) ? status = 'Charging' : status = 'Discharging';
 return status;
};
battery.addEventListener('chargingchange', function () {
 window.alert(chargeStatus());
}, false);
window.alert(chargeStatus());

You can try this one yourself using the example file battery-event.html—
plug and unplug your phone from its charger to see the status update.

network Information
Knowing the current strength of a device’s Internet connection is extremely
useful; you may want to serve lower-resolution images to devices with low
bandwidth or stream different video qualities to users depending on their
connection. Likewise, you may want to hold off on the background processes
if the user has a limited or metered tariff.

The Network Information API is composed of two attributes on the
 connection object: bandwidth, which is a figure representing the estimated
bandwidth in Megabytes (MBps) of the current connection (0 if the device
is offline, infinity if the result is unknown); and metered, a Boolean that
returns true if the connection is metered (such as on pay-as-you-go tariffs).

The following code shows a function that uses both attributes: bandwidth
to return the current connection’s bandwidth and metered to add an extra
message to the status if the connection is limited.

var status,
 connection = navigator.connection,
 showStatus = function () {
 status = connection.bandwidth + ' MB/s';
 if (connection.metered) {
 status += ' (metered)';
 }
 alert(status);
 };
showStatus();

www.it-ebooks.info

http://www.it-ebooks.info/

116 Chapter 6

Network Information also has an event handler, change, on the connection
object, which fires whenever the connection status changes; with this, you
can easily add an extra call to the function when necessary:

connection.addEventListener('change', showStatus, false);

You can see both at work in the file network.html—try connecting or dis-
connecting your Wi-Fi service to see the change event fire.

camera and Microphone
Cameras and microphones have been common on desktop and laptop com-
puters for a long time, and with the rise of mobile devices they’ve become
extremely prevalent—almost ubiquitous. But for years, we’ve had to rely on
third-party plug-ins, such as Flash and Java, to get audio and video input on
the Web, so a native input method is more than overdue.

This native input comes in the shape of the getUserMedia() method, part
of the WebRTC project, which I’ll discuss in more detail in Chapter 9. The
getUserMedia() method is on the navigator object, and takes up to three argu-
ments: The first is for options about the stream, such as whether to accept
only audio, only video, or both; the second is a callback fired when a success-
ful connection is made; and the third, which is optional, is a failure callback:

 navigator.getUserMedia({options}, success, failure);

As with the Geolocation and Fullscreen APIs, accessing the user’s cam-
era or microphone has privacy implications, so many browsers provide an
on-screen prompt asking for the user’s permission to access the device. On
devices with more than one camera, some user agents offer a native control
to switch between them.

A media stream requires a special element in order to be displayed,
either the new video or audio HTML5 element (depending on the stream
content). I introduce these new elements fully in Chapter 9, but for the
 purposes of the following demonstration, using a video stream, you need
the following markup somewhere on your page:

<video autoplay></video>

When the successful callback is fired from getUserMedia(), the media
stream is returned with a unique ID (provided by you), which will be sup-
plied to the video element. The following code shows a basic example,
which I’ve annotated and will explain after:

u navigator.getUserMedia({video:true}, function (stream) {
v var video = document.querySelector('video');
w video.src = window.URL.createObjectURL(stream);

});

www.it-ebooks.info

http://www.it-ebooks.info/

Device APIs 117

In line u, I’ve supplied two arguments to the getUserMedia() method:
The first is the stream options where I’m flagging that I want to get video,
no audio; and the second is the callback function where I’ve given the
result a unique ID of stream. In the next line v, I’ve used querySelector()
to assign the video element to the video variable so that in line w, I can use
the createObjectURL() method to convert stream into a URL and set it as the
src attribute of the video element. No failure callback is supplied.

To try this for yourself, see the file getusermedia.html—you’ll need to
have a video on your device to see the file in action.

Web storage
Recording information about previous activity is usually done with cookies,
but one of their drawbacks is that you can store only small amounts of data.
The Web Storage API was created to allow user agents to store more data on
the user’s device. This data can be stored only until the browser is closed,
which is known as session storage, or kept until the user or another script
actively flushes the data, which is called local storage. Both operate in essen-
tially the same way, except for that one key difference—permanence.

To store data, you save it in key:value pairs, similar to how you store
cookies now, except the quantity of data that can be saved is greater.
The API has two key objects, which are straightforward and memorable:
localStorage for local storage and sessionStorage for session storage.

n o T e : In the examples in this section I use sessionStorage, but you can swap this for
localStorage if you prefer more permanent storage; the syntax applies equally.

The web storage syntax is pretty flexible, allowing three different ways
to store an item: with the setItem() method, with square bracket notation,
or with dot notation. As a simple example, the next code snippet shows how
you might store this author’s name; all three different ways of storing data
are shown for comparison, and all are perfectly valid.

sessionStorage.setItem('author','Peter Gasston');
sessionStorage['author'] = 'Peter Gasston';
sessionStorage.author = 'Peter Gasston';

Some developer tools allow you to inspect the contents of storage, so
Figure 6-7 shows the result of this code, regardless of which approach you use.

Retrieving items from storage is just as flexible a process; you can use
the getItem() method, which accepts only the name of the relevant key as
an argument, or the square bracket or dot notation method without any
value. In the next code snippet, all three techniques are shown and are
equivalent:

var author = sessionStorage.getItem('author');
var author = sessionStorage['author'];
var author = sessionStorage.author;

www.it-ebooks.info

http://www.it-ebooks.info/

118 Chapter 6

Figure 6-7: A key:value pair stored in the browser, shown in the
WebKit Web Inspector

noTe Although I’m storing only very simple values in these examples, in most browsers,
you can store up to 5MB of data for each subdomain. This is the figure recommended
in the specification, although it’s not mandatory.

You can delete a single item from storage using the removeItem() method,
which like getItem(), takes a single key name as an argument and deletes the
stored item with the matching key:

sessionStorage.removeItem('author');

In the file storage.html, I’ve put together a simple demo that adds and
removes items from the storage. To see the result, you need developer tools
that show the contents of the storage, such as in the Resources tab of the
WebKit Web Inspector. The contents don’t update in real time, so you have
to refresh to see changes.

The nuclear option to remove all items in storage (although only on the
specific domain storing them, of course) is the clear() method:

sessionStorage.clear();

A storage event on localStorage is fired whenever storage is changed. This
returns an object with some useful properties such as key, which gives the
name of the key that has changed, and oldValue and newValue, which give the
old and new values of the item that has changed. Note this event fires only
on other open instances (tabs or windows) of the same domain, not the
active one; its utility lies in monitoring changes if the user has multiple tabs
open, for example.

The next code block runs a function that fires whenever storage is
modified and logs an entry into the console. You can try it yourself in the
file storage-event.html, but you’ll need to open the file and developer console
in two different tabs to see the changes occur—remember, changes to the
value will show in the other window, not the one where the click occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

Device APIs 119

window.addEventListener('storage', function (e) {
 var msg = 'Key ' + e.key + ' changed from ' + e.oldValue + ' to ' + e.newValue;
 console.log(msg);
}, false);

Storage is being taken even further with the development of the Indexed
Database (IndexedDB) API, which aims to create a full-fledged storage data-
base in the browser that you access via JavaScript. Many browsers have already
made an attempt at this, but the vendors couldn’t decide on a common for-
mat. IndexedDB is an independently created standard aimed at keeping
everyone happy. Its heavily technical nature takes it out of the scope of this
book, but if you need advanced storage capabilities, keep it in mind.

drag and drop
Adding a “physical” aspect to your websites that allows users to move ele-
ments around the screen is a nice option. This “drag and drop” behavior is
especially useful on devices with touch interfaces.

The Drag and Drop API is probably the oldest feature I cover in this
book. It was first implemented in Internet Explorer 5 back in 1999 (that’s
about 150 Internet years ago) and has been adopted by other browsers for
quite some time, although the effort to standardize it was only undertaken
as part of the HTML5 movement. Unfortunately, Drag and Drop shows
some signs of aging, being quite arcane and unintuitive at first.

By default the a and img elements can be dragged around the screen
(I’ll get to other elements momentarily), but you have to set up a drop zone,
an area that the elements can be dragged into. A drop zone is created when
you attach two events to an element: dragover and drop. All that’s required of
dragover is that you cancel its default behavior (for one of the arcane reasons
I noted earlier, which you don’t need to worry about). All the hard work
happens with the drop event.

That may sound a little confusing, so this example shows a very simple
setup: The #target element has the dragover and drop event listeners attached
to it, the callback function of dragover prevents the default behavior with
preventDefault(), and the main action happens inside the callback function
of the drop event.

var target = document.getElementById('target');
target.addEventListener('dragover', function (e) {
 e.preventDefault();
}, false);
target.addEventListener('drop', function (e) {
 // Do something
}, false);

www.it-ebooks.info

http://www.it-ebooks.info/

120 Chapter 6

All of the events in the Drag and Drop API create an object called
 dataTransfer, which has a series of relevant properties and methods. You
want to access these when the drop event is fired. For img elements, you want
to get the URL of the item, so for this you use the getData() method with a
value of URL and then do something with it; in this example, I’ll create a
new img element and pass the URL to the src attribute, making a copy of
the existing one:

target.addEventListener('drop', function (e) {
 e.preventDefault();
 var newImg = document.createElement('img');
 newImg.setAttribute('src', e.dataTransfer.getData('URL'));
 e.currentTarget.appendChild(newImg);
}, false);

Note the use of preventDefault() again inside the function on the drop
callback; using this is important, because in most (if not all) browsers the
default behavior after dropping an item into a drop zone is to try to open
its URL. This is part of Drag and Drop’s arcane behavior. All you really
need to know is to use preventDefault() to stop this from happening.

You can see a simple example based on the previous code in the file
drag-drop.html—just drag the image from its starting position to inside
the box.

I said previously that, by default, only a and img elements are draggable,
but you can make that true of any element in two steps. First, apply the true
value to the draggable attribute of the element in question:

<div draggable="true" id="text">Drag Me</div>

Second, specify a datatype for the element. You do this with the
dragstart event, using the setData() method of dataTransfer to apply a
MIME type (in this case, text/plain) and a value (in this case, the text
content of the element):

var txt = document.getElementById('txt');
 txt.addEventListener('dragstart', function (e) {
 e.dataTransfer.setData('text/plain', e.currentTarget.textContent);
}, false);

You can detect the type of file being dropped by using the contains()
method, which is a child of the types object, itself a child of the dataTransfer
object created in the callback function of the drop event. The method returns
true or false if the string supplied in the argument matches a value in types;
for example, to find out if a dropped element contains a plain text type, you
would use this:

var foo = e.dataTransfer.types.contains('text/plain');

www.it-ebooks.info

http://www.it-ebooks.info/

Device APIs 121

Using the contains() method means you can perform different actions
on different files.

The example file drag-drop-2.html shows two elements, an img and a p,
which can be dragged into the marked drop zone, creating a copy of each,
and the following code shows how this is done: The contains() method detects
if the element being dragged contains a URL; if it does, it must be an img,
so it creates a new img element with the URL of the dropped element in the
src attribute; if it doesn’t, it must be text, so it creates a new text node filled
with the text of the dropped element.

target.addEventListener('drop', function (e) {
 var smth;
 e.preventDefault();
 if (e.dataTransfer.types.contains('text/uri-list')) {
 smth = document.createElement('img');
 smth.setAttribute('src', e.dataTransfer.getData('URL'));
 } else {
 smth = document.createTextNode(e.dataTransfer.getData('Text'));
 }
 e.currentTarget.appendChild(smth);
}, false);

Although what I’ve described in this section is more than sufficient
for you to use the Drag and Drop API, the API contains plenty more that I
haven’t covered. If you’re interested, a number of extra events are available:
dragenter and dragleave are events for the drop zone, and dragend and drag
are fired on the draggable item.

Interacting with files
Working with different files is a common activity—although much more so
on desktops or laptops than on mobile devices—so an API is available for
doing this on the Web too. The File API is a fairly low-level API that allows
you to get information about files and to access their contents, and there
are a few higher-level APIs that I’ll mention in due course.

To access files, you can either choose them using the file input element
or drag them from a folder on your system (depending on the system you
use) with the Drag and Drop API, which is the approach we’ll look at here.

The dataTransfer object, which I just discussed in the previous section,
contains a files child object that contains a list of all the files dropped into
the drop zone. Each file has three properties—name, size, and type—and the
meaning of these should be pretty obvious.

The following code example shows a function where files dropped into
the drop zone will have their names listed. You do this with a for loop that
runs through the files object and outputs the name property for each. Try it
for yourself with the example file files.html.

www.it-ebooks.info

http://www.it-ebooks.info/

122 Chapter 6

target.addEventListener('drop', function (e) {
 var files = e.dataTransfer.files,
 fileNo = files.length;
 e.preventDefault();
 for (i = 0; i < fileNo; i++) {
 var el = document.createElement('li'),
 smth = document.createTextNode(files[i].name);
 el.appendChild(smth);
 e.currentTarget.appendChild(el);
 }
}, false);

If you need more than just information about the file, the FileReader
interface allows you to get the content as a text file or data URL (where rele-
vant). The following code snippet shows a simple example using an image
file as the source; the syntax is a little complex, so I’ve annotated the code
and will explain it next.

target.addEventListener('drop', function (e) {
 e.preventDefault();
 var files = e.dataTransfer.files[0],

u reader = new FileReader();
v reader.addEventListener('load', function (evt) {

 var img = document.createElement('img');
w img.src = evt.target.result;

 target.appendChild(img);
 }, false);

x reader.readAsDataURL(files);
y reader.addEventListener('error', function (evt) {

 console.log(evt.target.error.code)
 }, false);
}, false);

In u, a new FileReader object is created and assigned to the variable
reader. To this object, a new event listener is added v, which will fire when
the file has finished loading, running a function that will create a new
img element using the content of the uploaded file. The src for the img ele-
ment is obtained in w, using the result attribute of target, a child object of
the event. The type of result is determined in x using the readAsDataURL()
method, which encodes the file content as a 64-bit data string. Finally, an
error event listener is added to the object in y, which uses the code attribute
of the error object of the target object of the event object (phew!) to log an
error message.

Try this for yourself in file-2.html ; drag an image from a folder on your
system (if possible) to see it appear in the page. In addition to readAsDataURL(),
a few other methods are available: readAsText() returns the content of the
file as plain text, and readAsArrayBuffer() returns the content as a fixed-
length data buffer (especially useful for images).

www.it-ebooks.info

http://www.it-ebooks.info/

Device APIs 123

You can also use a number of APIs to go even further with files: The
File Writer API allows you to modify the content of a file, and the File System
API goes further still with the provision of a navigable filesystem on the user’s
device. These APIs are exciting but somewhat too technical for me to go
into detail in this book.

Mozilla’s firefox os and WebAPIs
A potentially quite interesting entry into the mobile OS market comes from
Mozilla, makers of the Firefox browser. Mozilla is building a brand new OS
from the ground up, all constructed with open web standards—HTML,
CSS, JavaScript, and others. The OS has no middleware layer, as iOS or
Android does, and the system APIs all use JavaScript to interact directly
with the hardware. Building a new OS is a bold undertaking, and I look for-
ward to seeing how it performs.

As part of that effort, Mozilla realized they needed to develop many
of the existing device APIs and create many more. This project is called
WebAPI, and although many of the included APIs have been covered
already in this chapter, a few are unique to Firefox OS at the moment.

Here are some of the new APIs: WebTelephony, for sending and receiv-
ing calls; WebSMS, for sending, receiving, and managing text messages;
Contacts, for accessing and managing the address book; and Device Storage,
for accessing shared files or folders such as the picture gallery featured on
many phones.

The fate of Firefox OS and broader implementation of these APIs
remain to be seen, but I’m quite excited about a smartphone OS that is
built using only open web technologies and the many possibilities that
opens up for web developers with regard to device interactions.

Phonegap and native Wrappers
If you need deeper access to device APIs but still want to develop using web
technologies, you might want to consider a native wrapper for your app.
These wrappers act as a kind of layer between your web application and the
device in question, providing hooks into the API but not using native code
to display what’s on the screen. Using a native wrapper around web tech-
nologies creates what’s known as a hybrid app.

Which wrapper you use depends largely on your targets (I’ll discuss
this in more detail in Chapter 10), but as an example of what they can do,
PhoneGap is perfect. It’s a wrapper for mobile apps, providing a common
API for developers to build hybrid apps that work across iOS, Android,
Windows Phone, Blackberry, and more.

www.it-ebooks.info

http://www.it-ebooks.info/

124 Chapter 6

summary
By necessity, I could detail only a few of the many APIs that make up the
web platform, including those for location and spatial movement, status of
the battery and Internet connection, access to the camera and microphone,
local storage capabilities, interaction with files and elements in a tactile way,
and access to information about the content of files. I hope that with this
overview and the example files I’ve been able at least to hint at the creative
possibilities that open up when you access a device through JavaScript.

further reading
Dive Into HTML5 has an in-depth explanation of the Geolocation API at
http://diveintohtml5.info/geolocation.html, whereas the MozDev article “Orienta-
tion and Motion Data Explained” gives a good overview of three-dimensional
orientation and movement: https://developer.mozilla.org/en-US/docs/DOM/
Orientation_and_motion_data_explained/.

The Fullscreen API is explained in the Sitepoint article “How to Use
the HTML5 Full-Screen API” by Craig Buckler, although the API changed
slightly as I was writing this, so some object names or properties may
have been updated. You can find the article at http://www.sitepoint.com/
html5-full-screen-api/.

The Battery Status API is well explained by David Walsh at http://
davidwalsh.name/battery-api/, and a discussion of the previous and
newly updated Network Information API is at http://nostrongbeliefs.com/
a-quick-look-network-information-api/.

HTML5 Rocks gives the best explanation of getUserMedia() in their
 article “Capturing Audio & Video in HTML5”: http://www.html5rocks.com/
en/tutorials/getusermedia/intro/. The full aims of the WebRTC project are
listed at http://www.webrtc.org/.

MozDev (again) gives a concise introduction to the Web Storage API:
https://developer.mozilla.org/en-US/docs/DOM/Storage/.

The most accessible guide to the Drag and Drop API that I found was
written by the HTML5 Doctors at http://html5doctor.com/native-drag-and-drop/,
while the five-part “Working with Files in Java Script” by Nicholas Zakas is an
excellent resource for the File API: http://www.nczonline.net/blog/2012/05/
08/working-with-files-in-javascript-part-1/.

The APIs that form the Firefox OS project are listed at https://wiki
.mozilla.org/WebAPI/, and the slides from the presentation “WebAPIs
and Apps” by Robert Nyman provide a great overview of the APIs: http://
www.slideshare.net/robnyman/web-apis-apps-mozilla-london/. “Are We Mobile
Yet?” gives an at-a-glance guide to levels of API implementation: http://
arewemobileyet.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

7
i M a g e S a n d g r a P h i C S

For many years the only way to display
images on the Web was to use JPGs and

GIFs, with the former generally used for
photographs and the latter for icons and

graphics. These formats were later joined by the PNG
format, which largely ousted the GIF (for icons at
least, although not for animations of cats). But they
are all inert image formats; other than simple animation frames, they
aren’t capable of handling dynamic or interactive images or graphics,
which was generally done with third-party plug-ins such as Flash.

Modern browsers, however, have the luxury of two new graphical formats:
Scalable Vector Graphics (SVG), a scalable format that can be included
in the DOM and manipulated using CSS and JavaScript, and canvas, an
HTML5 element that can be drawn on using an API. Between these two, a
whole new range of graphical possibilities has opened up, from interactive
charts to on-the-fly image manipulation.

www.it-ebooks.info

http://www.it-ebooks.info/

126 Chapter 7

In this chapter, I’ll walk you through the basics of each format, show-
ing some common examples and giving you enough information so you can
choose when each format is appropriate. Before I start, however, I’ll briefly
explain some key terms and concepts.

comparing vectors and bitmaps
Vector graphics are made of geometrical shapes formed with a coordinate
system; a series of points is plotted on a grid and lines are drawn between
them to form the shapes, making them inherently scalable. If I make my
grid larger, the same shape is drawn from the same coordinates, but the
coordinates are now farther apart so my shape is bigger.

Bitmap graphics are a series of colored pixels laid out in a grid to form
an image; if you open an image in Photoshop (or similar) and zoom in,
you can see this grid for yourself. All of the common web image formats
(JPG, PNG, GIF) are bitmap formats. Resizing a pixel grid means the com-
puter has to use a scaling algorithm to increase or decrease the sizes of the
pixels to fit the new space, removing pixels or adding new ones where nec-
essary. These algorithms generally work impressively but are usually better
at removing pixels than adding them, which is why a scaled-down bitmap
often looks much better than a scaled-up one.

In Figure 7-1, you can see a comparison of the two different graphical
approaches as I zoom in on an image. The vector image is crisp and clear,
but the bitmap looks fuzzy, as the scaling algorithm had to make some esti-
mates around adding new pixels to accommodate the larger scale.

Figure 7-1: Detail from a scaled-up image in SVG (left) and PNG (right);
the SVG is noticeably sharper and clearer.

Vector graphics aren’t suitable for photographic or photo-realistic images,
but are great for illustrations such as logos, icons, and charts. Conversely,
bitmap graphics are less useful in environments where scaling is common
(such as mobile devices) but are much better for photographic images.

scalable vector graphics
Vector graphics on the Web are created using the Scalable Vector Graphics
(SVG) markup language. This language has been around for a long time
without too much success, but two factors gave it a new lease on life: imple-
mentation in IE9 and the rise of the mobile and multi-device Web. All the
major browsers have now implemented it.

www.it-ebooks.info

http://www.it-ebooks.info/

Images and Graphics 127

The main reason SVG is so useful is its scalability, which I discussed
in the previous section. Scalability is a real boon for responsive web design.
You can reuse the same image across every platform, avoiding the problems
with adaptive images, which I discussed in Chapter 3. In addition, the way
that SVGs are made and embedded in a page can enhance accessibility and
searchability, as you’ll see in the following sections.

Of course, SVG doesn’t work for everything—photographs, as men-
tioned, are still better off as bitmaps—but it is a really useful format for
multi-screen design.

Anatomy of an SVG Image
Before I explain how you can use SVG in your pages, I want to run briefly
through the code behind it. You see, SVG is actually an XML file that marks
up the image that it creates; this means you can view it in a text editor and
change it manually—something that is basically impossible with bitmap files.

Open an SVG file in your preferred editor, or view the source in a
browser window, and inspect the contents. Although the actual markup
 varies wildly from file to file, you will at least be able to see the many com-
mon elements. To begin, all SVG files start with the XML declaration, which
holds the version number of XML you’re using, the text encoding method,
and the standalone attribute that sets whether the file makes reference to
other external files or stands alone (in most cases, just leave this as no):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

Next, you see the svg element—which is the root—and a series of name-
spaces with information about the syntax used. The following example is
taken from an SVG file I opened at random. It tells me that the file uses
Dublin Core metadata terms (see “RDFa” on page 30 for more on this), is
licensed under Creative Commons, and uses RDF, SVG, and XLink schema
to describe its contents:

<svg xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://web.resource
.org/cc/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg=
"http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:xlink=
"http://www.w3.org/1999/xlink">

The simplest form of the svg element requires only the attributes for a
link to the SVG namespace and the version of SVG that you’re using:

<svg xmlns="http://www.w3.org/2000/svg" version="1.1">

All of the children of the svg element contain the information used to
create the image itself. The bulk of this information is contained in a series
of elements based on basic mathematical shapes used to make the drawing:
circle, rect, ellipse, polygon, and line. Each of these shape elements also
has a series of attributes to describe the shape’s position, size, and color

www.it-ebooks.info

http://www.it-ebooks.info/

128 Chapter 7

information. For example, here’s how to draw a circle whose center is 50px
from the left of the grid (cx) and 75px from the top (cy), has a radius of
25px (r), a black border (stroke) 2px wide (stroke-width), and a background
color of silver (fill):

<circle cx="50" cy="50" r="25" stroke="black" stroke-width="2" fill="silver"/>

n o T e The element is closed with a trailing slash; SVG is strict XML and all empty elements
must be closed.

In comparison to the previous code, here’s a rectangle that is 100px
wide (width) and 50px tall (height), is offset 25px from the left (x) and 50px
from the top (y) of the grid, and has a blue background (fill):

<rect width="100" height="50" x="25" y="50" fill="blue"/>

I don’t intend to go too much deeper into how an SVG file is made—for
two reasons: First, the subject is too complex for a single chapter of a book
to hope to cover; and second, I don’t think you’ll use it that often. You are
more likely to use a graphical editor (such as Adobe Illustrator or the open
source Inkscape) to edit SVG files, perhaps making only small adjustments
to the code by hand.

Linked SVG Files
You’ll use SVG on your sites in two main ways. One is to embed the code
into the markup itself, which I cover in the next section. The second and
easier way is to link to a premade SVG file as an image, in the same way
you would a JPG or PNG. This method is great if you want a scalable, deco-
rative image, although you don’t get to access the SVG as part of the DOM.

To use a linked SVG, you must have an image saved with the file exten-
sion .svg (or .svgz for a compressed file); then just supply the path to the
image at the relevant point in your code. You can use it in the markup with
an img element:

Or you can call it in CSS anywhere that accepts a url() function as an
argument, such as background-image:

.foo { background-image: url('path/to/foo.svg'); }

W a r n i n g The drawback to using SVG in the img element or CSS is that you lose certain advanced
SVG behaviors, such as scripting and animations. If having these is important to you,
use an embedding technique (which I cover next) instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Images and Graphics 129

SVG Sprites

SVG’s scaling capabilities are an especially good fit for using sprites for
icons—that is, showing only a selected portion of a single large image to
cut down on the number of file downloads and to speed up page load—
although a little setup work is required. The way it works is that all of the
desired icons are stacked one above the other in a single SVG image and
then all except one are hidden using CSS (as illustrated in Figure 7-2).

Figure 7-2: In the SVG file, each of the icons is stacked one above the other (left) and hid-
den with CSS, except for one icon which is shown (right).

The code required to do this looks roughly like the following (and
because there’s a lot to explain, I’ve annotated it):

u <svg ...>
 <defs>

v <style><![CDATA[
 .icon { display: none; }

w .icon:target { display: inline; }
]]></style>
 </defs>

x <svg viewBox="0 0 30 30">
y <g class="icon" id="icon1">...</g>

 </svg>
 <svg viewBox="0 0 30 30">
 <g class="icon" id="icon2">...</g>
 </svg>
</svg>

The root element u requires no extra namespaces, so it can be the
same as in previous examples. CSS can be put inline to the file itself v,
which is handy for this technique as you can reuse the image on multiple
pages; note that you must use a CDATA section to let the browser know
that this is text, not XML to be parsed. In the style rules, you set all of the
.icon elements to not display, except for the one the :target pseudo-class w
applies to, which is shown (I’ll explain why shortly). Each sprite layer in the
stack has a viewBox attribute x with four coordinates inside; this attribute
sets the limit of the box that will be displayed, using the first two numbers
for the x - and y -coordinates of the top left of the box and the second two
numbers as the width and height of the area to be displayed. Finally, the
g element (used for grouping shapes) for each sprite y has the same class
name as the others but a unique id.

www.it-ebooks.info

http://www.it-ebooks.info/

130 Chapter 7

With this setup completed, you can link directly to the icon you want,
using its id value in the URL, as shown here:

.bar { background-image: url('foo.svg#icon1'); }

The :target pseudo-class is
applied when the hash of a URL
matches the id of an element; in
this case the URL hash is #icon1,
so the :target selector applies to the
svg element #icon1. As all other svg
elements are set to not be displayed,
#icon1 is shown regardless of its order
in the stock. You can see an example
of this in svg-icon.html and illustrated
in Figure 7-3.

W a r n i n g Changes to the way browsers render SVG may possibly cause the stacking technique to
break in the future. See the link in “Further Reading” on page 139 for more detail
on this.

SVG Sprites with Fragments

An alternative spriting technique uses Fragment Identifiers. This method
doesn’t require the icons to be stacked; the SVG sprite sheet can have all
of the icons laid out distinctly, with their positions called using the four
coordinates of viewBox as part of the URL in the svgView function. Here’s
an example:

.bar { background-image: url('foo.svg#svgView(viewBox(0 0 30 30))'); }

The advantage of this approach is that the SVG file isn’t required to have
a unique id for each sprite, and you can show multiple sprites or pieces of a
sprite, which is more complicated to achieve with the stacking method.

Embedded SVG
If you want to manipulate the SVG, you can embed it directly into a page’s
HTML. The SVG then becomes part of the DOM and is, therefore, acces-
sible through JavaScript and potentially CSS.

You can do this in a number of ways, the first of which is to use the embed
element. This element has been used across the Web for embedding Flash
files, although it was never made standard until the advent of HTML5. You
can add SVG to your page with embed by supplying a link to the source file in
the src attribute:

<embed src="foo.svg"></embed>

Figure 7-3: The same source image is used
for both buttons, but each has a unique
icon because of the stacking technique.

www.it-ebooks.info

http://www.it-ebooks.info/

Images and Graphics 131

Similarly, you can use the object element, with the path to the SVG file
used as a value for the data attribute:

<object data="foo.svg"></object>

With either of these approaches to embedding SVG, you can access the
markup through the DOM by using the getSVGDocument() method, which returns
an object that you can traverse using standard DOM methods. The follow-
ing code shows how to get the SVG object from an embed element and then
log the number of child nodes it contains, using the activeElement attribute:

var svg = document.querySelector('embed').getSVGDocument();
console.log(svg.activeElement.childNodes.length);

A much simpler and more powerful method of embedding SVG, how-
ever, is to put the markup directly into the page—something that is pos-
sible in most modern browsers. You can see a simple example of this in
svg-embedded.html. Take a look at the code in the file and at what is shown
here, and then compare it to the result displayed in the browser (also illus-
trated in Figure 7-4).

<svg version="1.1" xmlns="http://www.w3.org/2000/svg">
 <rect width="100%" height="100%" fill="#000" />
 <circle cx="150" cy="100" r="80" fill="#FFF" />
 <text x="150" y="125" font-size="60" text-anchor="middle">SVG</text>
</svg>

Figure 7-4: The SVG attributes state that the rectangle should be black
and the circle white (left), but the example shows the opposite (right).

You should notice that the circle, despite having its fill attribute set to
white in the code, actually displays black. This happens because the inline
SVG becomes part of the DOM and I’m styling it with CSS. In the style tags
in the file header, you find these rules:

rect, text { fill: #FFF; }
circle { fill: #000; }

As the SVG forms part of the DOM, you can manipulate it exactly the
same way as any other element. Some of the elements and attributes, such

www.it-ebooks.info

http://www.it-ebooks.info/

132 Chapter 7

as the fill attributes in this example, are presentational and, therefore,
affected by CSS. And as SVG is part of the DOM, no special methods are
required to interact with the element through script, meaning you can
use standard DOM scripting like this:

var svg = document.querySelector('svg');
console.log(svg.childNodes.length);

This easy access makes direct embedding into the markup an especially
useful way to display interactive data that responds to user input—adding,
removing, or altering elements as required.

SVG Filters
SVG provides a range of graphical filters that you can apply to elements, let-
ting you adjust color values, add dynamic blurring, and so on. The structure
of this is first to create a defs element (immediately after the root), which is a
container used for reusable elements, followed by a filter element that is
a container for all of the individual filter elements. This probably sounds a
little more complicated than it actually is. You can see it’s quite straight-
forward in the following code sample, which applies a Gaussian Blur effect
using the feGaussianBlur element:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg">
 <defs>
 <filter id="filter1">
 <feGaussianBlur stdDeviation="3" in="SourceGraphic"/>
 </filter>
 </defs>
</svg>

You need to pay attention to two things in this code: first, the id attri-
bute on the filter element, which I use to refer to the filter effect later in
the markup, and second, the two attributes on the feGaussianBlur element.
The two attributes are stdDeviation, which is specific to this element and is a
number used to specify the amount of blur, and in, which is common to all
filter effects and describes the input for the filter. The SourceGraphic keyword
value is the default, so you could actually leave it out in simple cases like this.

The filter has been defined at this point and can be called by referring
to its unique id. In the following code, I apply this filter to a bitmap image
that is called using an image element and the xlink:href attribute. This is
a namespaced attribute, so I need to call that namespace on the root ele-
ment. Finally, I apply the filter using the filter attribute with the unique
id as the argument in the url() function value. You can see this in the file
svg-filters.html, and the result is shown in Figure 7-5.

<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://
www.w3.org/1999/xlink">
 <defs>
 <filter id="filter1">

www.it-ebooks.info

http://www.it-ebooks.info/

Images and Graphics 133

 <feGaussianBlur stdDeviation="3" in="SourceGraphic"/>
 </filter>
 </defs>
 <image xlink:href="foo.jpg" filter="url(#filter1)"/>
</svg>

Figure 7-5: A photograph before (left) and after (right) an SVG filter is applied

You can combine multiple filter effects into a single filter by stacking
them as children of the filter element. In the next code snippet, I apply the
Gaussian Blur as before, albeit with a slightly lowered stdDeviation value, but
I also add a second filter, feMorphology. This filter is used to erode or dilate
the input image, and in this case I want to erode it, so I use the erode value
on the operator attribute, with a radius attribute value of 2.

The code for my completed two-stage filter, which you can see for your-
self in svg-filters.html (the result is shown in Figure 7-6), looks like this:

<filter id="filter1">
 <feGaussianBlur stdDeviation="2"/>
 <feMorphology operator="erode" radius="2" />
</filter>

Figure 7-6: The original image file (left) and after a two-stage SVG filter is applied (right)

www.it-ebooks.info

http://www.it-ebooks.info/

134 Chapter 7

You can apply filters to entire blocks of HTML using SVG’s foreignObject
element, which acts as a container for snippets of markup as long as the
markup is correctly formatted XHTML. The next example shows how this
works. There are a few things to note: First, foreignObject has a requiredFeatures
attribute that checks to see whether the browser supports the feature of the
required object type, in this case, extensions to SVG1.1; second, the same
filter is used as in the previous examples; and third, the markup inside the
element has the XHTML namespace.

<foreignObject filter="url(#filter1)" requiredFeatures="http://www.w3.org/TR/
SVG11/feature#Extensibility">
 <h1 xmlns="http://www.w3.org/1999/xhtml">SVG</h1>
</foreignObject>

Try it for yourself in the file svg-foreignobject.html. You can see the result
in Figure 7-7.

Figure 7-7: SVG filter applied to HTML markup using foreignObject

The Convergence of SVG and CSS
Work on version 2 of SVG—which goes by the rather clever name of
SVG2—is underway at the moment, and one of its goals is better integration
with CSS, as many of their features are shared. The new Transforms mod-
ule, for example, integrates the extremely similar CSS Transforms and SVG
Transforms modules. Other new shared features include advanced image
techniques such as Masking and Clipping (showing or hiding parts of an
SVG image) and Compositing and Blending (combining shapes and colors).

Probably the first to arrive, however, will be Filter Effects. These are
already implemented piecemeal in some browsers as I write this and come in
two main components. The first is to use defined filters on any element in
the page, even outside of the SVG code block; for example, using the filter
defined in the previous section natively in CSS would be as easy as this:

.foo { filter: url(#filter1); }

The second component is to use function keywords—essentially,
shortcuts to predefined SVG filters. For example, to add Gaussian blur
to an element, you could use the blur() function and, for saturation, the
saturate() function:

.foo { filter: blur(3) saturate(0.1); }

www.it-ebooks.info

http://www.it-ebooks.info/

Images and Graphics 135

Like CSS3, SVG2 will be modular, allowing for staggered development
and implementation, meaning you could start seeing elements of it sooner
rather than later.

A Drawback of SVG
For all the advantages of including SVG in your documents, one of its key
strengths—accessibility via the DOM—is also its key weakness: Being part of
the page means slower loading times as the more complex page is rendered
and more memory consumption as more objects are held in temporary storage.

You should consider this when deciding whether to include complex
SVG objects in your page, especially as it might affect people who visit
your site using a lower-powered mobile or portable device.

The canvas element
The canvas element is so named because, like a blank canvas, it’s there to
be drawn on. The drawing is done with JavaScript using a dedicated API,
creating a tailor-made bitmap graphic. And it really is like a painter’s canvas
in that once you’ve drawn on it, you can’t then manipulate the things you’ve
drawn. They are not objects like SVG elements, just pixels on the screen;
you can only draw over them.

The basic setup is incredibly simple: Add a canvas element to your
markup—perhaps with a unique id that will make it a little easier to
 reference—with size attributes and fallback content for browsers that
don’t support canvas (or JavaScript):

<canvas id="canvas" height="400" width="800">
 <p>Sorry, your browser doesn't support canvas (or JavaScript)</p>
</canvas>

n o T e A quick note of disambiguation: When referring specifically to the element I’ll use
canvas; any other use of “canvas” throughout this book is a shorthand used to refer
to the technique of drawing to a canvas element using the API.

All subsequent actions are performed with JavaScript. The first step is
to select the canvas and create a context, which is a fancy way of saying that
you’re going to draw on it. You do this using the getContext() method with a
context as an argument, which for simple two-dimensional shapes is 2d. I’ll
also add some feature testing to make sure the browser supports the canvas
API. My code ends up looking something like this:

var el = document.getElementById('canvas');
if (el && el.getContext) {
 var context = el.getContext('2d');
 if (context) { ... }
}

www.it-ebooks.info

http://www.it-ebooks.info/

136 Chapter 7

Then you begin drawing. As with SVG, drawings are carried out with a
series of shapes and lines, using a coordinate system. For example, to draw
a rectangle filled with a solid color you use the fillRect() method, which
accepts four number arguments: The first two are x - and y -coordinates of
the top-left corner; the next two are the width and height. The following
code draws a 120×120 square, filled with a solid color, 20px from the top-
left corner of the canvas element:

context.fillRect(20,20,120,120);

You can also change the appearance values of the objects you draw,
using a series of properties in the API. These are applied the next time
a method that draws to canvas is run. In the following code, I change the
color of the fill and then set up a series of drop shadow properties that are
rendered on the next rectangle drawn with fillRect() and all subsequent
drawings until I change the properties again:

context.fillStyle = '#ff0000';
context.shadowOffsetX = 3;
context.shadowOffsetY = 3;
context.shadowBlur = 3;
context.shadowColor = 'rgba(0,0,0,0.5)';
context.fillRect(200,80,160,160);

Drawing circles is a little more complex, requiring the arc() method,
which takes six arguments: the first two are the x- and y -coordinates of the
center of the circle, the third is the radius, the fourth is the starting angle
of the arc, the fifth is the finishing angle—I’m using p multiplied by 2 to
draw a full circle—and the sixth and last argument is a Boolean to state
whether the arc is drawn counterclockwise. When I’ve done all that, I use
the stroke() method to draw the outline of my circle:

context.arc(360,240,160,0,Math.PI*2,false);
context.stroke();

You can see a few different
shapes that I’ve drawn in the file
canvas.html (and in Figure 7-8),
but as with SVG, the canvas API
includes so much that I can’t pos-
sibly hope to cover it in a single
chapter of this book, so if you’re
interested in learning more, I
recommend taking a look at some
of the great free resources avail-
able online, a few of which I list in
“Further Reading” on page 139.

Figure 7-8: Simple shapes drawn on the
 canvas element

www.it-ebooks.info

http://www.it-ebooks.info/

Images and Graphics 137

Image Manipulation
Canvas becomes extremely useful when manipulating images. You can load
an image into a canvas and, once there, draw and manipulate it as you wish.
Get the image data with the getImageData() method, which uses four argu-
ments—the now familiar x, y, width, and height—to select the portion of
the canvas you want to manipulate. Using this method inside a load event is
a good idea; it ensures the script doesn’t run before the image you’re get-
ting data from has finished loading.

In the next code snippet, I use querySelector() to find an image in the
page and, when it has loaded, first draw it onto the canvas with drawImage()
and then use getImageData() to select the whole canvas and assign it to the
variable newImg :

var img = document.querySelector('img');
img.addEventListener('load', function () {
 context.drawImage(img,0,0);
 var newImg = context.getImageData(150,0,150,225);
}, false);

Once you have the image, you can begin to manipulate it using the data
property. This is a huge array that contains information about every pixel
in the image portion, where each item is a number from 0 to 255 represent-
ing the RGBA color model: The first item is the red value of the pixel, the
second is the green, the third blue, and the fourth alpha. A fully opaque
red pixel would be represented by the four array items [255,0,0,255].
These four values are repeated for every pixel in the image.

That means you can manipulate the color value of every single pixel,
which is a pretty powerful ability to have. In the following code, I use a
for loop to go through all the pixels and invert their values by subtracting
their current value from 255. Once I’ve done this, putImageData() returns
the modified image to the canvas at the same coordinates. You can see the
result in Figure 7-9, and you can see for yourself how this looks in the file
canvas-image.html.

var img = document.querySelector('img');
img.addEventListener('load', function () {
 context.drawImage(img,0,0);
 var i,
 newImg = context.getImageData(00,0,500,500),
 newLen = newImg.data.length;
 for (i=0;i<newLen;i+=4) {
 newImg.data[i] = 255 – newImg.data[i];
 newImg.data[i+1] = 255 – newImg.data[i+1];
 newImg.data[i+2] = 255 - newImg.data[i+2];
 }
 context.putImageData(newImg,0,0);
}, false);

www.it-ebooks.info

http://www.it-ebooks.info/

138 Chapter 7

Figure 7-9: The image on the right has been manipulated using canvas to invert the colors.

Rather excitingly, you can combine the canvas element with the live
video stream obtained from the getUserMedia() method I described in Chap-
ter 6, providing image manipulation on the fly. Although I don’t have the
space to go into that in any detail, I encourage you to look online for some
great demos, such as Tim Taubert’s “Building a Live Green Screen with
getUserMedia() and MediaStreams.” See “Further Reading” on page 139.

WebGL
You may have noticed that when I created the canvas context, I specified it
was to be 2-D, which implies there is also a 3-D context—and there is, using
a technology called WebGL to gain access to the device’s graphics card and
create hardware-accelerated 3-D objects in the browser. The actual context
name is webgl. Test for support using something like this:

var el = document.getElementById('canvas');
if (el && el.getContext) {
 var context = el.getContext('webgl');
 if (context) { ... }
}

WebGL is not fully supported across every browser and may never be,
and it uses a language that is extremely complicated for your average devel-
oper (me included), so obviously WebGL is far beyond the scope of this
book. As before, if you’re interested in learning more, I advise you to take
a look at some of the fantastic free online resources that exist.

When to choose svg or canvas
The two image methods in this chapter should really be viewed as com-
plementary rather than competing, as they each fill a different role in web
graphics. You could likely end up using both in your websites instead of
being forced to make a choice between them.

www.it-ebooks.info

http://www.it-ebooks.info/

Images and Graphics 139

Where SVG excels is in its scalability, which makes it suitable for any
screen regardless of size or resolution. As it creates new elements in the
DOM, SVG is very useful for interacting with and being manipulated by
JavaScript. And it’s also much easier to make accessible by adding alterna-
tive and fallback text to the created items. SVG is a good choice for logos,
icons, and interactive charts and graphics.

Canvas is bitmap-based so is less suitable for scaling. It allows no exter-
nal manipulation by JavaScript beyond its own API and has few to no acces-
sibility features as it currently stands (although work is underway to improve
that). Canvas is best suited for image manipulation, and as it doesn’t access
the DOM (which can slow a page considerably), it can be good for moving
multiple items around the screen quite quickly, making it handy for gaming.

Both formats have their pros and cons, and for many purposes either
would be suitable, so the best advice I can give you is that you should care-
fully consider the problem you want to solve and test each solution to see
which is the more relevant one.

summary
In this chapter, I covered the two different approaches to digital graphics—
vectors and bitmaps—and the way they are implemented on the Web using
SVG and canvas. I discussed the basic syntax of each and looked at the
situations they are best suited for. You can explore much more about each
different graphic format, but for reasons of space I’ve, by necessity, only
touched briefly on each—hopefully, however, enough to make you want
to find out more.

further reading
You can find a great introduction to SVG at the SVG Basics website: http://
www.svgbasics.com/, and the W3C’s own SVG Primer is a useful way to dig
deeper: http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html. MDN has
a quite complete list of elements and attributes: https://developer.mozilla.org/
en-US/docs/SVG/.

The technique for stacking SVG icons was developed by Erik
Dahlström and is described on the blog of Simurai: http://simurai.com/
post/20251013889/svg-stacks/. Mozilla’s Robert O’Callahan warns of the
 possible changes to the stacking technique: http://robert.ocallahan.org/
2012/10/impending-doom-for-svg-stacks-sort-of.html. I detailed the svgView()
method on my blog, Broken Links: http://www.broken-links.com/2012/08/
14/better-svg-sprites-with-fragment-identifiers/.

The IE Testdrive site has a good hands-on tool for experimenting with
SVG Filter Effects: http://ie.microsoft.com/testdrive/graphics/hands-on-css3/
hands-on_svg-filter-effects.htm.

Dirk Schulze wrote a good, concise introduction to the features
planned for SVG2: http://dschulze.com/blog/articles/8/new-features-in-svg2/.

www.it-ebooks.info

http://www.it-ebooks.info/

140 Chapter 7

You can find a good range of canvas tutorials, from beginner to expert
level, at http://www.html5canvastutorials.com/, and an excellent cheat sheet
with all of the core properties and methods on Jacob Seidelin’s blog at
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html (last updated
in 2009 but still relevant).

HTML5 Rocks has a tutorial on making more advanced image manipu-
lation effects at http://www.html5rocks.com/en/tutorials/canvas/imagefilters/.

In his blog post “Building a Live Green Screen with getUserMedia() and
MediaStreams,” Tim Taubert explains the basics of live video image manip-
ulalation: http://timtaubert.de/blog/2012/10/building-a-live-green-screen-with-get
usermedia-and-mediastreams/.

The Learning WebGL blog has lessons for complete beginners on work-
ing in a three-dimensional context in canvas at http://learningwebgl.com/
lessons/, and WebGL.com has frequent roundups of demos, tutorials, and
developer meet-ups: http://www.webgl.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

8
n e W f o r M S

The motivating factor behind the creation
of Web Applications 1.0, the original pro-

posal that evolved to become HTML5, was
to extend the power of HTML forms to allow

the creation of rich and flexible online applications.
HTML5 doesn’t disappoint, bringing a whole new
range of elements, attributes, and controls to make
forms richer, more interactive, and more informative
in the modern web platform.

Many JavaScript frameworks, such as the popular jQuery UI, provide
controls and widgets that extend the functionality of form elements; these
range from simple enhancements such as automatically suggesting values as
you type to more complex user interface elements such as those that allow

www.it-ebooks.info

http://www.it-ebooks.info/

142 Chapter 8

you to pick a date. Given HTML5’s stated aim of standardizing common
design patterns, it comes as no surprise that these common form elements
should become part of the specification.

Other than new widgets and form interactions, the most common use
of JavaScript in forms is to check for errors while the user is filling out the
form, and to ensure the data is correctly formatted and doesn’t contain
any nasty surprises before being sent to the server. HTML5 also provides a
native implementation of this validation, with a series of new attributes and
input types that require set patterns of data, including on-screen notes and
alerts in many browsers, and an API that gives developers more flexibility
when using script.

new Input Types
In HTML 4.01, a handful of form elements allowed user input, including
textarea, checkbox, and radio, but the most common was without a doubt
input, most often with a type attribute value of text. This hard-working field
(from here on known as the text input) was used in every situation in which
a specialized control was unavailable: as a search box, for telephone num-
bers and email addresses . . . you name it, the text input did it, with only
some client- or server-side validation to give meaning to the different types
of data being provided by the user.

When work on HTML5 was underway, with its stated emphasis on stan-
dardizing common patterns of existing usage, creating new input types to
lift some of the burden from the encumbered text input was really a no-
brainer. Now a handful of properties have the appearance of a text input
but with different type values to give meaning to the data.

The first new value is search, which is (fairly obviously) used to mark up
a search box. It looks like this:

<input type="search">

In some browsers, the appearance of the search box is differentiated
from that of a regular text input, sometimes with rounded corners to match
the OS it’s running on or perhaps with a button to clear the contents of the
field. A few different examples are shown in Figure 8-1. But although its
appearance and behavior might differ from a text input, search has no limi-
tation on the type of data that you can enter.

Figure 8-1: The search input rendered in different browsers: Chrome for
Ubuntu (left) and Safari for iOS (right)

That’s not the case with the next two values, email and url, which are pro-
vided for the user to enter—can you guess? that’s right!—an email address

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 143

and a URL. The fields look identical to a text input but have a key differ-
ence: They limit the data that users can enter into them. Here’s how these
values are used:

<input type="email">
<input type="url">

The email type accepts only a well-formatted email address—peter@
broken-links.com, for example—and the url type requires a correctly format-
ted URL, including the protocol, such as http://broken-links.com. If the user
enters a value that doesn’t match the required pattern into either field,
the field will be declared invalid. I’ll return to this subject a little later, in
“Client-side Form Validation” on page 154.

Another commonly requested piece of information is a telephone num-
ber. The new dedicated input for this has a type of tel:

<input type="tel">

The actual format of telephone numbers can vary wildly, including
numbers, letters, and symbols, so this field doesn’t have any restrictions
as to which characters can be entered.

As many browsers display these new input types mostly identically,
what exactly is the point of using them instead of text? Well, I’ve already
mentioned that they provide some native validation, which I’ll cover in
“Client-side Form Validation” on page 154, but aside from that, they also
offer another big advantage: On many devices with on-screen (or soft)
 keyboards, they provide the user with a sympathetic keyboard layout.

Apple popularized sympathetic soft keyboard layouts when it invented
iOS (called iPhone OS back in those heady pre-iPad days), and their imple-
mentation is probably still the standard-bearer. If you open the example
file input-types.html on an iOS device and put the focus into each input in
turn, you’ll see the on-screen keyboard update to display a different layout
for each (shown in Figure 8-2 in case you don’t have an iOS device handy):
The text input shows a standard keyboard layout; the email input adds an
@ and a period, commonly used in email addresses; the url input displays
a period, slash, and top-level-domain chooser; and the tel input displays a
telephone number pad. All of these inputs help users enter the correct data
in a faster and more convenient way.

Figure 8-2: The sympathetic soft keyboard on iPhone, optimized for (from left to right)
text, email, url, and tel input types

www.it-ebooks.info

http://www.it-ebooks.info/

144 Chapter 8

The value of sympathetic layouts becomes really obvious when you use
an on-screen keyboard that doesn’t support them; switching among differ-
ent views for letters, cases, numbers, and symbols becomes a real chore. So
help your users out by implementing these new types wherever and when-
ever you can.

new Attributes
Before moving on to discuss more input types, I want to make a brief
digression to talk about some of the many new attributes. These attributes
bring some useful and crucial new properties and behavior to HTML forms
and, once again, are based on popular script libraries and workarounds cre-
ated by developers and made official as part of HTML5.

autofocus
The autofocus attribute, which is common to all input types, simply sets the
focus on the specified element when the page is loaded. In a text input
field, for example, the cursor would already be placed and ready for the
user’s input. autofocus is a Boolean attribute, so the value to activate it can
be either autofocus or just left out entirely, as shown here:

<input type="text" autofocus>

If multiple instances of autofocus are used on a page, the first (in DOM
order) will be respected.

W a r n i n g Keep in mind that some users, especially those requiring assistive technology, may
be confused by being automatically focused on a form when the page loads. Check
out Bruce Lawson’s article “The Accessibility of HTML5 Autofocus” for a discussion
of best practice (see “Further Reading” on page 160).

placeholder
The placeholder attribute, which you can use on any text-like input element
(the ones I’ve already introduced in this chapter, for example), takes a string
of characters as its value; this string will be displayed inside the input when
no value is present. Use the string for instructions on the type of value
required; for example, in an email input you might include something
like this:

<input type="email" placeholder="e.g. foo@bar.com">

W a r n i n g The placeholder text should not describe the value of the input—for example, “Work
email”—as that’s the role of the label element. Remember the placeholder text disap-
pears when users click in the box, so they may not remember what field they’re filling
out if the label isn’t present.

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 145

Most browsers style the placeholder text lighter than the default color
to show that it’s holding text rather than a value, but depending on your
website’s color scheme that may not be ideal. Unfortunately, no standard-
ized selector is available to change placeholder text properties, although
some browsers have implemented their own proprietary pseudo-class (or
pseudo-element):

input:-moz-placeholder {}
input:-ms-input-placeholder {}
input::-webkit-input-placeholder {}

autocomplete
The autocomplete attribute sets whether the browser should remember pre-
vious values entered into a field and offer them back to you in the future.
The values are on and off; the default is on, but if you’re creating a site with
confidential form information, you may want to set this to off to increase
the user’s security by not offering suggestions to someone who may subse-
quently use the same device:

<input type="email" autocomplete="off">

spellcheck
Many browsers now offer native spellchecking facilities. These are usually
applied, by default, to textarea elements only, but you can apply the spell-
checker—if present—to any field by using the spellcheck attribute. This is a
slightly strange attribute, as it’s Boolean but doesn’t behave like the other
attributes of that type; it requires a value of true or false to enable or dis-
able spellchecking:

<input type="text" spellcheck="true">

By default, the dictionary used will be in the language of the user’s
browser, but you can change this with the lang attribute. If the user has the
stated language dictionary installed (Spanish, in the following example),
that dictionary will be used for spellchecking:

<input type="text" spellcheck lang="es">

multiple
The multiple attribute is for situations when the user can enter or submit
more than one entry in a field. You can pair it with the file input to select
multiple files from a user’s device or with the email input to enter more than
one email address in the field. The attribute is a true Boolean, so only the
attribute name is required:

<input type="file" multiple>

www.it-ebooks.info

http://www.it-ebooks.info/

146 Chapter 8

form
One of the limitations of forms in HTML 4.01 was that all form elements,
including the submit button, had to be contained within the form element
itself, meaning that, unless JavaScript were used, all the elements had to
follow each other subsequently in the markup, limiting the ways they could
be laid out on the page.

HTML5 has addressed this with the form attribute, which takes as a
value the id of a form element, creating an association between the field
and the form regardless of their position in the markup. The value of the
element is then submitted along with the form. In this example, the input
#bar will be submitted along with the form #foo:

<form id="foo">...</form>
<input type="text" id="bar" form="foo">

datalists
Where elements accept text input—such as text, url, or search—you can
provide a list of helpful suggestions to the user. The browser can offer
these based on the user’s previous input (controlled by the previously men-
tioned autocomplete attribute), but at times you may want to suggest a range
of predefined terms. Implement this latter option with the datalist element.

The datalist element contains a list of suggestions, each of which is con-
tained in an option child element (which you should be familiar with from
the select element in HTML 4.01). To illustrate what I mean, here’s a short
datalist with only a few options:

<datalist id="apes">
 <option>Chimpanzee</option>
 <option>Gorilla, Eastern</option>
 <option>Gorilla, Western</option>
 <option>Orangutan</option>
</datalist>

The datalist element isn’t rendered on the page and doesn’t have to be
close to the input that refers to it; it can be placed anywhere in the markup.

To create an association between the input field into which the user will
enter data and the datalist element that holds the suggestions, the former
uses the id value of the latter as the value for its own list attribute:

<input type="text" list="apes">

Now when the user types a letter (or sequence of letters), any option ele-
ment values within the datalist that match that sequence will be displayed
in a list of suggestions below the input. From here, the user can choose
a matching option. You can see this for yourself in input-types-more.html,
as illustrated in Figure 8-3.

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 147

Figure 8-3: Auto-suggested results from a
datalist element

This association between the id and list attributes means that multiple
inputs can refer to the same datalist element, if required.

In browsers that don’t support datalist, the input box falls back to a
standard text input. Please keep this in mind if you require certain input
values from the user, and ensure you have contingencies in JavaScript and
on the server side.

on-screen controls and Widgets
The new elements you’ve seen so far are all based on a simple text box, but
some form elements also provide richer on-screen controls; in HTML 4.01,
for instance, think of select and checkbox. But as I mentioned in the intro-
duction, many other widget types are commonly used by developers and
designers—think of date pickers and number range sliders—so HTML5
has adopted and standardized these patterns.

How these controls and widgets appear depends on the browser and
platform in which they’ve been implemented; the HTML5 specification
notes only that these controls could be used and isn’t prescriptive as to how
they appear. If a browser doesn’t support the controls natively, they should
fall back to look like a standard text input.

Numbers
The new HTML5 input types discussed so far already cover various text for-
mats. But, of course, many forms require that the user enter a number, for
instance, credit card details, an area code, or a quantity.

The number input is the field for inputting numbers. It is often displayed
as a text field, but some browsers also add controls—often a pair of arrows,
one up, one down—for incrementing or decrementing the value.

Similar to number is the range input, which lets users enter a value with-
out requiring them to be too precise about the exact figure; to allow this,
many browsers style this element as a slider.

<input type="number">
<input type="range">

You can compare number and range as they’re displayed in Chrome for
Android in Figure 8-4.

www.it-ebooks.info

http://www.it-ebooks.info/

148 Chapter 8

Figure 8-4: The number and range types as displayed in
Chrome for Android

Both of these types have some new attributes in common: max and min
are number values that set the maximum and minimum (did you work
that out for yourself?) permitted values, and step is the number by which
the value is incremented or decremented. The following code shows how
all three could work; the number input has an initial value of 50 and can be
incremented or decremented by 10 at a time to reach a minimum of 10 or
a maximum of 100:

<input type="number" max="100" min="10" step="10" value="50">

You can also manipulate these values with JavaScript using the stepUp()
and stepDown() methods. Each takes a single integer value, which moves the
value of the input by the specified number of steps; for example, this syntax
reduces the range input value by 3 steps:

var foo = document.querySelector('input[type=range]');
foo.stepDown(3);

Each method returns an error if the specified number of steps causes
the value to exceed the element’s max or min values.

When working with numeric fields, you may want to take advantage of a
new DOM property defined in HTML5, valueAsNumber. This property is similar
to the existing value property but returns the value as a number rather than
a string, meaning you don’t need to convert between types using parseInt().
Using valueAsNumber is simplicity itself:

var foo = document.querySelector('input[type=number]');
bar = foo.valueAsNumber;

Dates
Another popular data pattern for forms is a date or time field, used in situ-
ations such as when asking the user to enter a date of birth or choose a
delivery time and date. Often these are rendered using a JavaScript-created
date picker, a common widget aimed at helping users choose a date from a
range shown on screen so they don’t have to worry about conforming to your
chosen date pattern.

HTML5 has a range of new input types for date and form fields, and
many browsers have added native date-picker widgets to enhance them.
Probably the most commonly implemented is date, which lets the user
select a single date from the widget:

<input type="date">

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 149

The implementation method varies across browsers, with mobile and
tablet devices varying quite significantly from desktop and laptop browsers.
You can see some examples of this variety in Figure 8-5.

Figure 8-5: The native date-picker widget on the Chrome for Android tablet (left), the
iPhone (center), and the Chrome desktop (right)

HTML5 also has a series of other date and time inputs: If you need to
be more general about dates, you can use month to select an entire month
and week for an entire week; or if you require a time without any associated
date, you can use time to choose hours and minutes. A couple examples of
different time and date pickers are shown in Figure 8-6.

Figure 8-6: A time picker on Chrome for Android (left) and a month
picker for iPhone (right)

If you require a date and a time, the datetime input requests both. This
field requires a value in the format YYYY-MM-DDTHH:MMZ, where the Z is
a shorthand code for the UTC time zone. For example, to submit a time of
2 pm on April 1st, 2014, you would use 2014-04-01T14:00Z. If the time zone
isn’t required, you could use datetime-local. For both types, the picker widget
would have fields for both date and time, as shown in Figure 8-7.

All the date-related input types are demoed in input-types-dates.html;
open the page in different browsers and see how they’re displayed.

As with the number input types, the max and min attributes are permit-
ted, but they must use a valid date or time format; a full datetime would
require YYYY-MM-DDTHH:MMZ, whereas the month would require only
YYYY-MM. The step attribute is also allowed, but its time period depends
on the element used: a day, a week, a month, or a time in seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

150 Chapter 8

Figure 8-7: A datetime picker on Chrome for Android

So putting that all together, you could use attributes somewhat like the
following, where the month input would allow the user to select only dates
between January 2012 and June 2016; the step attribute would be in play
only if the stepDown() and stepUp() methods were used:

<input type="month" max="2016-06" min="2012-01" step="3">

W a r n i n g If you have strict limits on required dates, don’t rely on the max and min attributes, as
they’re not supported by some user agents; always use JavaScript and server-side vali-
dation to ensure dates are in range.

As numbers have the valueAsNumber DOM property, so dates have
valueAsDate. This property works in the same way, but returns a date-
formatted value; for example, given the date 04/01/2014, the value prop-
erty would return 2014-04-01, whereas the valueAsDate property would give
Tue Apr 01 2014 01:00:00 GMT+0100 (BST) (in my time zone, at least).

var foo = document.querySelector('input[type=date]');
bar = foo.valueAsDate;

Color
If you’re building an app that allows the user some level of customization,
you may be interested to know that HTML5 has a color input, which will, if
implemented, show either the system default color picker or a proprietary
widget, depending on the browser:

<input type="color">

Try it for yourself in input-types-more.html. Figure 8-8 shows how Chrome
implements it for Ubuntu.

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 151

Figure 8-8: Chrome uses the native color picker of your OS for the color element;
here’s how it looks in Ubuntu.

displaying Information to the user
As well as accepting input from users, sometimes displaying information
back to users is helpful, perhaps to show their progress through filling out
a long form or the results of a measurement. A new set of elements defined
in HTML5 is aimed at exactly that purpose.

progress
Progress bars show movement toward a set goal and are commonly used in
operating systems and on the Web, such as when loading data into a web
application or installing software. The progress element gives you a stan-
dardized method for implementing progress bars in your own pages. In its
simplest form, it shows progress between 0 and 1, using the value attribute
to show the current position:

<progress value="0.5">0.5</progress>

Although this element is displayed as a bar in most browsers—as you
can see in Figure 8-9—including the value inside the element is also good
practice, as it serves as a fallback for browsers that don’t have a graphical
widget.

Figure 8-9: Different implementations of the progress element:
Firefox for Android (left) and Opera for Ubuntu (right)

If the values you want to use can’t be simply divided into a range of 0
to 1, you can set a different range with the max and min attributes:

<progress max="20" min="10" value="15">15</progress>

www.it-ebooks.info

http://www.it-ebooks.info/

152 Chapter 8

Updating the bar using script is easy, requiring only a change of the
value attribute, perhaps in a function somewhat like this one, where any
value supplied as an argument to the updateProgress function updates the
progress bar accordingly:

var progressBar = document.querySelector('progress'),
 updateProgress = function (newValue) {
 progressBar.value = newValue;
};

You can get the current progress toward the target by using the position
property, which returns the result of dividing the current value by that of
the maximum value; in the case of the previous example, the max attribute
is 20 and the value is 15, so the position is 0.75:

var currentProgress = progressBar.position;

meter
At first glance, the meter element seems superficially the same as progress,
and indeed, some browsers style the two in the same way. They differ
semantically, however; where progress shows movement toward a goal,
meter shows a scalar measurement, such as a rating or a poll result. At its
most simple, meter shows a value between 0 and 1.0, just like progress:

<meter value="0.5">0.5 of 1</meter>

The similarities to progress continue, as you should add a text child for
browsers that don’t represent this graphically, and max and min attributes are
also available if you want to change the scale:

<meter max="20" min="10" value="15">15 of 20</meter>

Where meter differs significantly from progress is in displaying ranges
of low, medium, and high values, using three new attributes: low sets the
upper limit of the low range, high sets the lower limit of the high range, and
optimum sets the ideal value. If these attributes are present, the meter’s cur-
rent value is either displayed as being within acceptable bounds or flagged
as being outside them.

The following code example illustrates this. Here, any value less than
or equal to 0.2 is considered low and will be displayed with a warning color
(often yellow) in many browsers, whereas a value greater than or equal to
0.8 is considered high and will be likewise flagged (most commonly in red);
any number between those two will be marked in the standard color (usu-
ally green) for the average range:

<meter low="0.2" high="0.8" value="0.65">0.65 of 1</meter>

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 153

Introducing the optimum attribute changes the behavior slightly, as it
can introduce a third level of “acceptability” depending on where it’s posi-
tioned. For example, given the meter element in the previous example, you
could say there are three ranges: low for any value of 0.2 or less, high for
any 0.8 or greater, and average for any greater than 0.2 but less than 0.8.
If you were to set the optimum to be 0.9, any value in the high range would
be optimal and colored green, any in the average range less optimal and
colored yellow, and any in the low range less optimal still and colored red.
Conversely, if the optimum value were 0.1, those ranges of optimality would
be reversed.

If that all sounds a little complex, the following markup shows a
few different examples, which you can see for yourself in the example file
input-types-meter.html and illustrated in Figure 8-10; I advise you to view this
example as it relies on color, which is hard to convey in a black-and-white
book! I’ll annotate this code and then explain it subsequently.

u <meter low="0.2" high="0.8" value="0.85">0.85 of 1</meter>
v <meter low="0.2" high="0.8" optimum="0.9" value="0.85">0.85 of 1</meter>
w <meter low="0.2" high="0.8" optimum="0.1" value="0.85">0.85 of 1</meter>

In all three examples, the low range is 0 to
0.2, the medium range is 0.21 to 0.79, the high
range is 0.8 to 1, and the value of the meter is
0.85. The numerals correspond to the examples
in Figure 8-10 in vertical order. In u no opti-
mum value is given, so the optimum range
is medium (neither high nor low). The value
of the meter is in the high range, one range
away from optimum, so it’s colored yellow. In
v the optimum value is 0.9, so the high range
becomes optimum; as the value is 0.85, this
value is within optimum range and colored green. In w the optimum value
is 0.1, so the low range becomes optimum; the value is 0.85, which is two
ranges away from optimum, so colored red.

As I said, this concept is a little hard to convey in black and white, so
try the example for yourself. Once you see it, the concept is quite simple
and easily grasped.

output
The output element displays the result of a calculation or user input and
is especially handy for showing the result of interactions in other fields. A
purely semantic element, output has no widget or on-screen presence if no
value is supplied. At its most basic, it requires no attributes:

<output></output>

The output element becomes more useful when interacted with using
JavaScript. Its key properties are value, which gets or sets the value, and

Figure 8-10: Different values
for the meter element

www.it-ebooks.info

http://www.it-ebooks.info/

154 Chapter 8

defaultValue, which gets or sets a default value (if none is supplied). To
show how this works, I’ve written a short script that updates the output
 element when a range input is changed. Here’s the markup:

<label for="output">Output</label>
<input type="range" id="range">
<output id="output" for="range"></output>

The following script first selects the elements I’ll interact with, sets
a default value of 50 for the output element, and then adds an event lis-
tener to the range input, which fires whenever the value is changed. This
listener runs an anonymous function to get the value of the input and set
the value of the output. Here’s the final script, which you can try for your-
self in input-types-output.html:

var range = document.getElementById('range'),
 output = document.getElementById('output');
output.defaultValue = 50;
range.addEventListener('change', function (e) {
 var newValue = e.currentTarget.value;
 output.value = newValue;
}, false);

client-side form validation
The new input types are really useful, but perhaps HTML5’s greatest gift to
developers is native client-side error checking. Checking the contents of a
form before it’s submitted is extremely important for security and usability,
and until now, we haven’t had a simple way to do so, although many hun-
dreds of JavaScript libraries have been written to work around this.

Now, with native form validation, many browsers will automatically
warn you that the value you’ve entered into a field doesn’t match the input
type. In Firefox, for example, if you type only numbers into an email input
or omit the http:// protocol from the start of a URL in a url input, a glowing
red rule around the input field warns you that the values are incorrect, as
you can see in Figure 8-11.

If you try to submit the form now, you’ll receive an on-screen error
message, such as the one in Figure 8-12—if, that is, your browser has imple-
mented client-side validation. Each browser that has implemented it has its
own style.

If you delete the content of the field and then click Submit again, no
error is displayed. This field is optional by default, so not supplying a value
is valid, but an incorrectly formatted value is invalid. To make the field not
optional, you can add the Boolean required attribute:

<input type="email" required>

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 155

This attribute forces the browser to check the value of the field; an
empty or improperly formatted value is invalid and returns an error, and
only a properly formatted value allows you to submit the form.

The field’s type determines the pattern of the value format—email
requires an email address, url requires a URL with protocol, date requires
a year, month, and day, and so on—but you can override this requirement
with the pattern attribute. The value for pattern is a regular expression, or regex,
a standardized way of matching strings of data across many programming
languages. As a simple example, you might want to allow only numbers in a
tel input:

<input type="tel" pattern="\d*">

If you try to submit this input
with letters or non-numeric charac-
ters, you’ll receive a different error
message, asking you to use the cor-
rect pattern. You can customize this
error message in some browsers by
adding extra text in the title attri-
bute; in this example, the words
“Numbers only” are added to the
on-screen message, as you can see
in Figure 8-13.

<input type="tel" pattern="\d*" title="Numbers only">

It’s far, far beyond the scope of this book to explain regular expressions
in any more detail (to be honest, I barely understand them myself). You
can find some useful regex generators online that will help if you need it.
(There’s one listed in “Further Reading” on page 160.)

If you want to disable validation on an entire form, you can do so with
the novalidate attribute. This attribute prevents any of the validation pro-
cesses from running, regardless of the required state or pattern matching:

<form action="foo" novalidate>...</form>

Figure 8-12: A warning message is dis-
played when the field doesn’t validate,
as shown here in Chrome.

Figure 8-11: This email address isn’t for-
matted correctly, so in Firefox the field
is surrounded by a glowing red rule.

Figure 8-13: Extra information added to
the warning using the title attribute

www.it-ebooks.info

http://www.it-ebooks.info/

156 Chapter 8

And you can do this at a more local level with the formnovalidate attri-
bute on an input or button element.

<button type="submit" formnovalidate>Go</button>

This option is useful when you want to have an option to submit with-
out validation. For example, in a content management system, allowing the
user to save a page for editing at a later date, without publishing it, is quite
common; the data might be in an incomplete state and invalid, so running
validation would only annoy the user.

The constraint validation API
Native form validation is great, but at times you may want to do more with
it by perhaps adding some custom validation or creating your own error-
reporting framework. The Constraint Validation API has a series of objects,
properties, and methods aimed at giving you the flexibility to extend the
browser’s validation system or to roll your own.

The first property is willValidate, which returns true or false if the ele-
ment it’s called on will be validated—not if its value is valid, but if the vali-
dation process will be applied. You might find it more useful to think of the
property as willBeValidated. By default, all form elements return true, unless
they are explicitly set not to—for example, by using the disabled attribute.

You could use willValidate to run actions only on form elements that
will be validated, as in this code:

var inputFields = document.querySelectorAll('input'),
 inputLen = inputFields.length,
 i;
for (i = 0; i < inputLen; i++) {
 if (inputFields[i].willValidate) {
 // Do something
 }
}

The simplest way to validate an element in a form is to use the
 checkValidity() method, which returns true or false depending on whether
the ele ment it’s called on will validate with its current value. This method
is at the core of the following script, in which the function checkStatus is
used to run the checkValidity() method and update the contents of a sib-
ling p element with a check or cross, depending on its validation status.

The function is attached to the email input using a listener for the input
event, which is new to HTML5. This event fires whenever the value of an
input or textarea element is updated—sort of similar to the keypress event—
but it allows for the user entering blocks of text before firing on a pause or
on the use of auto-suggested values:

var email = document.getElementById('email');
function checkStatus(e) {

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 157

 var valid = e.currentTarget.checkValidity(),
 validMsg = e.currentTarget.nextSibling,
 status = (valid) ? '' : '';
 validMsg.textContent = status;
}
email.addEventListener('input', checkStatus, false);

You can try this in the example file checkvalidity.html, which also runs
the script on a tel input that accepts only numbers.

As well as the input event, HTML5 brings us the invalid event. This
event is fired on an element with an invalid value when either the form
is submitted or the checkValidity() method is run and returns a standard
HTMLEvent object. That being the case, I could update the previous code to
attach an extra event listener to each field, logging the invalid event when-
ever it occurs:

inputField[i].addEventListener('invalid', logInvalid, false);

If you want to get information about why a value doesn’t validate, you
can use the validity property. This property returns a validityState object
with a range of properties related to validity; for example, if the field is
required but contains no value, the valueMissing property returns true; or,
if there are no validation errors, the valid property returns true.

The following script builds on the previous one by displaying a status
message if the checkValidity() method returns false. It uses the validity
property to check if a few common statuses are true and outputs a custom
message if so, or a message of “Unknown error” in other cases:

var email = document.getElementById('email');
function statusMsg(e) {
 var valid = e.currentTarget.checkValidity(),
 validStatus = e.currentTarget.validity,
 validMsg = e.currentTarget.nextSibling,
 status;
 if (valid) {
 status = '';
 } else {
 if (validStatus.patternMismatch) {
 status = 'Pattern mismatch';
 } else if (validStatus.typeMismatch) {
 status = 'Type mismatch';
 }
 ...
 }
 validMsg.textContent = status;
}
email.addEventListener('input', statusMsg, false);

You can run this script for yourself in the file validitystate.html; check
the console to see the validityState object, and explore the different true
and false values. Figure 8-14 shows an example as logged in Firebug.

www.it-ebooks.info

http://www.it-ebooks.info/

158 Chapter 8

Figure 8-14: The validityState object logged in Firebug, showing
the current state of validity for the form field

Browsers that have native validation alerts create their own messages
that appear on screen; for example, submitting an empty input that has the
required attribute applied displays the message “Please fill in this field” in
Firefox. The validationMessage property holds this message when the field
is in an invalid state; if the value of the field is valid, the validationMessage
property is an empty string.

You can set the message using the setCustomValidity() method, which
also allows you to set a custom validation rule. For example, in the follow-
ing code, I have two tel input types, referred to as telHome and telWork,
and I want to ensure that the two values are different. To do this, I add an
input listener on telWork, and each time the user types in this field, the rule
checks if the value is the same as telHome, and if it is, a custom validation
message is created:

var telHome = document.getElementById('tel-home'),
 telWork = document.getElementById('tel-work');
telWork.addEventListener('input', function (e) {
 if (e.currentTarget.value === telHome.value) {
 telWork.setCustomValidity('Must be different');
 } else {
 telWork.setCustomValidity('');
 }
}, false);

Take a look at customvalidity.html to see this in action; you can see the
result in Figure 8-15.

Figure 8-15: A custom error message
created with setCustomValidity()

www.it-ebooks.info

http://www.it-ebooks.info/

New Forms 159

forms and css
A new range of CSS pseudo-classes, known as the UI element states pseudo-
classes, augments the extra functionality provided to forms by HTML5.
These pseudo-classes let you style form elements based on their current
interaction or validation state. The names of the pseudo-classes are really
quite descriptive, and I imagine their meanings are clear to you, but just
in case you’ve had a hard day and aren’t thinking straight, I’ll briefly
explain them.

Form fields that are required (that is, have the required attribute set to
true) can be styled with the :required pseudo-class, the opposite of which is
:optional. You could, for example, give a dark border to required fields and
a lighter border to optional ones:

input:required { border-color: black; }
input:optional { border-color: gray; }

The :valid and :invalid selectors are applied to elements based on their
current validation state; :valid is used to apply styles to a valid form field,
and :invalid to an invalid form field. That being the case, you may want to
style the text of each input element in a different color based on its state:
green for valid and red for invalid:

input:valid { color: green; }
input:invalid { color: red; }

n o T e The latest CSS Selectors specification proposes a :user-error pseudo-class, similar
to :invalid but applying only when a user has entered data that doesn’t match the
required pattern in a field. At the time of writing, this pseudo-class has not been
implemented in any browsers.

You can style form elements that have the disabled attribute applied
by using the :disabled pseudo-class and, conversely, :enabled for those that
have the enabled attribute. Likewise, a form element that has the readonly
attribute set to true can be styled using :read-only, the opposite of which is
:read-write.

radio and checkbox input types have some dedicated pseudo-classes:
:indeterminate, which is when the user has neither checked nor unchecked
the input, and :checked for when the user has checked the input. Curiously,
no matching unchecked state exists; for this, you must use the negation
selector:

input[type='checkbox']:not(:checked) { ... }

For number and range inputs, you can use the :in-range and :out-of-range
pseudo-classes, which apply if a value is in or out of the acceptable range—
either 0 to 1 or a custom range set with max and min. If using on-screen
controls, the user can’t exceed these limits, so the :out-of-range selector is
unlikely to be used frequently.

www.it-ebooks.info

http://www.it-ebooks.info/

160 Chapter 8

summary
From humble beginnings, forms in HTML5 are now tremendously flex-
ible and powerful, providing natively much of the functionality that we as
developers have been adding in with JavaScript over the years. The new
input types alone are a welcome addition, especially for those of us who
use dynamic soft keyboards, and the new attributes offer fine control over
form elements.

But the native validation puts the icing on the cake, replacing the many
different JS libraries that have been written to solve the client-side valida-
tion problem. And while that’s welcome, the Constraint Validation API really
gives full power to developers, enabling custom validation across different
browsers and platforms in a fully standardized way.

With the extra styling capability provided by new CSS pseudo-classes,
HTML5 forms are a prime example of the power of the new web platform.

further reading
The ever-helpful MDN provides a concise and complete guide to the
new input types at https://developer.mozilla.org/en-US/docs/HTML/Element/
Input/. PPK has detailed tables showing support on the desk top at http://
www.quirksmode.org/html5/inputs.html and for mobile devices at http://www
.quirksmode.org/html5/inputs_mobile.html.

Ryan Seddon wrote a polyfill for providing HTML5 form capabilities
to browsers that don’t support them natively: Find it at https://github.com/
ryanseddon/H5F/.

Bruce Lawson’s discussion of autofocus accessibility, “The Accessibility
of HTML 5 Autofocus,” is on his blog at http://www.brucelawson.co.uk/2009/
the-accessibility-of-html-5-autofocus/.

HTML5 Rocks has a good overview of the Constraint Validation API at
http://www.html5rocks.com/en/tutorials/forms/constraintvalidation/.

A useful application for testing regular expressions is Rubular. Don’t
worry that it’s aimed at Ruby; it works just as well for JavaScript and HTML5
forms: http://rubular.com/.

And your humble author wrote an introduction to CSS3 pseudo-
classes for HTML5 forms at HTML5 Doctor: http://html5doctor.com/
css3-pseudo-classes-and-html5-forms/.

www.it-ebooks.info

http://www.it-ebooks.info/

9
M u L T i M e d i a

Although audio and video have been a
popular part of the Web for many years

on sites such as YouTube, Dailymotion, and
SoundCloud, they’ve always been second-class

citizens, relying on third-party plug-ins (especially
Flash) to operate. A reliance on plug-ins isn’t a good
long-term plan for website owners or browser makers,
not least because the user is responsible for keeping them up-to-date. Surely,
updating audio and media capabilities along with the browser is best, espe-
cially since most browsers have a frequent update cycle nowadays.

Plug-ins can also cause stability issues, as Steve Jobs famously noted
when detailing the reasons for not supporting Flash on iOS:

We also know firsthand that Flash is the number one reason Macs
crash. We have been working with Adobe to fix these problems,
but they have persisted for several years now. We don’t want to
reduce the reliability and security of our iPhones, iPods, and
iPads by adding Flash.

www.it-ebooks.info

http://www.it-ebooks.info/

162 Chapter 9

For these reasons, having audio and video natively in the browser is
extremely important, and one of the big pushes in HTML5 has been toward
making this happen in the form of a pair of media elements that are widely
implemented in browsers today. These elements control playback of audio
and video from multiple sources, and in addition to robust HTML implemen-
tation, they also have an extensive API and set of events, giving developers
granular control over what they can do. Being part of the web platform, they
interact well with other content—far beyond what was possible with sand-
boxed plug-ins—making the new media elements true first-class web citizens.

After exploring the media elements, I’ll take a brief look at the future
of multimedia on the Web, from audio mixing and effects APIs to the
future (or at least a possible future) of real-time voice, video, and data
communication—the WebRTC project.

The Media elements
To play either audio or video files, you need to use the audio or video ele-
ment, respectively. They are similar, sharing the same attributes and child
elements, with the type of media they deliver being the key difference. At
their most simple, each element requires only a single attribute, src, which
is the path to the media file to be played:

<audio src="foo.oga"></audio>
<video src="foo.ogv"></video>

What you see depends on the element: with video, you see the video
file at its natural dimensions with the first frame showing; with audio, you
see nothing. In either case, you can’t play the file because there are no on-
screen controls. You add them using the controls attribute:

<audio src="foo.oga" controls></audio>
<video src="foo.ogv" controls></video>

Now you’ll see on-screen
controls for each of the media
elements, as illustrated in Fig-
ure 9-1, and you can take a
look for yourself in the file
media-elements.html. I suggest
you view this example file in
Chrome, Firefox, or Opera,
for reasons that will become
clear in this chapter.

Using these attributes, a
media file plays only at the user’s
request and only once; if you
prefer, you could have the file
play as soon as it has loaded by

Figure 9-1: Native controls for the video (top) and
audio (bottom) elements on Chrome for Ubuntu

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia 163

using the autoplay attribute and make it loop indefinitely (until the user
pauses it or leaves the page) by using the loop attribute; both are Boolean,
so they require no value:

<audio src="foo.oga" autoplay loop></audio>

W a r n i n g Autoplayed sound has accessibility drawbacks; see the WCAG Audio Control advice,
listed in “Further Reading” on page 175, for more information on how best to cater
to everyone.

On some mobile devices, media files won’t play where they’re embed-
ded in the page; instead, they’re launched and played in the device’s own
media player framework. If this happens, the autoplay attribute is ignored.

If you do autoplay or loop a file, keep in mind that the sound can be
annoying or confusing to some users and consider muting the volume by
default using the Boolean muted attribute:

<video src="foo.ogv" autoplay muted></video>

The full media file isn’t normally downloaded when the page loads,
but only when playback is requested; instead, metadata about the file—
length, file size, and so on—is loaded into memory (a key exception to this
is when the autoplay attribute is applied, which requires the full file to be
downloaded). If you prefer to change this behavior, you can use the preload
attribute, which has three values: metadata is the default and behaves as men-
tioned; auto indicates to the browser that it should download and cache the
file because the user will probably play it; and none means the file probably
won’t be used, so don’t download anything.

<video src="foo.ogv" preload="auto"></video>

Note that these are only hints, not commands; the browser makes the
final decision about when to download media files based on variables such
as the current network and the device that is running the browser. Mobile
browsers will likely ignore the auto value, as downloading a potentially huge
video when the user has metered bandwidth is a real no-no. In many cases,
metadata is the sole acceptable value.

Extra Attributes for the video Element
Although the audio and video elements share many attributes, the latter, by
virtue of it having more of a presence in page layout, also has several extra
attributes. Video files will, by default, be displayed on the page at the dimen-
sions in which they were coded. You can change this using the height and
width attributes:

<video src="foo.ogv" height="360" width="240"></video>

www.it-ebooks.info

http://www.it-ebooks.info/

164 Chapter 9

Note that these attributes set the size of the video element, not the video
itself, so if the values you supply aren’t in the same ratio as the file, the video
won’t be stretched to fill the space; it maintains its aspect ratio and position
in the center of the element, as you can see in video-dimensions.html (and in
Figure 9-2). If you prefer to change this behavior, use the object-fit and
object-position properties from Chapter 3.

Figure 9-2: The video file won’t lose its aspect ratio when the video element is resized.

The video element is blank or uses a platform-specific graphic by default,
until the first frame of the video has loaded, at which point that first frame
is displayed as a still image. If you prefer a different still or image entirely,
you can specify your own with the poster attribute:

<video src="foo.ogv" poster="foo.png"></video>

Multiple Source Files
In the examples I’ve shown so far, I’m using the .ogv extension for video
files and .oga for audio files, which are extensions of the Ogg format. Ogg
is a container format, which means it can hold different video and audio
formats within it; for Ogg video, the most common format is Theora, and
for audio, Vorbis.

Both Theora and Vorbis are free formats—that is, no licensing fees
are involved in using them. This fact would seem to make them ideal for
Web use, and indeed, some sites like Wikimedia do encode their media
with them. They’re not supported in many browsers, however, for reasons
I explain in “Format Wars” on page 166. So what can you do?

Both audio and video elements have provisions for specifying multiple
source files. You leave out the src attribute and use source child elements
instead. In the following example, I set two different source files for a video
element: The first is an .ogv file; the second, a .webm file; and the third, an
.mp4 file. The browser plays the first video format that it supports.

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia 165

<video>
 <source src="foo.ogv" type="video/ogg"></source>
 <source src="foo.webm" type="video/webm"></source>
 <source src="foo.mp4" type="video/mp4"></source>
</video>

The example file media-elements-sources.html demonstrates this feature;
the file appears to be the same as media-elements.html, but unlike that first
example, it shouldn’t matter which browser you use to open this file. As
long as the browser supports HTML5 video, one of the provided source
files should play.

Notice that I’ve included the type attribute, which contains the MIME
type of the different formats and lets the browser know which type of file
it should play without having to access the file itself. This attribute isn’t
required, but including it is considered good practice (although some older
browsers used to have trouble with the type attribute). As always, test to see
if it causes any problems.

The source element has a media attribute, which takes a media query as
a value (see Chapter 3), meaning the specified file is used only if the query
returns true—handy for supplying different files to different devices. Most
likely you won’t supply a 1920×1080 video file to a 480×320 screen, or vice
versa. The following code example sets a different source file, foo-hd.ogv, if
the screen is at least 1920px wide and has an aspect ratio of 16/9:

<video>
 <source src="foo-hd.ogv" media="(device-aspect-ratio: 16/9) and (min-device-
width: 1920px)"></source>
 <source src="foo.ogv"></source>
</video>

The real utility of this attribute has been debated; some feel a better
solution is to use JavaScript to adapt the quality of the video, depending
on device resolution and network status, and a spec is being proposed to
handle this. For the near future, however, the media attribute is the best
approach to adaptive video.

Fallbacks
You should provide some kind of fallback if a user’s browser doesn’t support
the media elements, so the user doesn’t just see empty space on the page.
Anything inside the video element is displayed when the video is not pres-
ent, so the fallback can be as simple as a line of text that explains the prob-
lem or perhaps an image showing a key frame as an alternative.

<video src="foo.ogv">

</video>

www.it-ebooks.info

http://www.it-ebooks.info/

166 Chapter 9

for M aT Wa rS

As I’ve mentioned a couple of times already, no single audio or video format is
supported by all browsers, meaning you have to use a few different source files
to accommodate everyone . The reason for this is patents and licensing .

I don’t want to go into too much detail as it’s a bit of a sideshow, but in
a nutshell, Apple and Microsoft, out of the core browser makers, are putting
their weight behind the MP4 format . This format is patented and commercially
licensed, and is something close to an industry standard . MP4 is a container
that supports many formats, chief among them being H .264 for video and AAC
for audio .

Firefox and Opera can’t or don’t want to license commercial formats in
their browsers, so they implemented the Ogg formats . Google implemented
both Ogg and MP4 but then added to the mix by releasing their own free
format, WebM, which Opera and Firefox also adopted . Apple and Microsoft
claim that WebM infringes on their patents, Ogg isn’t good enough, and MP4
offers better hardware performance, so we have somewhat of a standoff .

The situation is broadly like this: Safari (desktop and all iOS devices),
Android, Chrome, Internet Explorer, and many smart TVs support commercially
licensed MP3 audio and MP4 video . Chrome, Firefox, and Opera support Ogg
video . The same three plus recent Android devices support Ogg audio and
WebM, and Samsung’s latest smart TVs also support WebM . The whole thing
is a bit of a nightmare .

The audio situation may end up being resolved by a new format called
Opus, which is free and apparently infringes on no patents and is being intro-
duced as part of the WebRTC project (discussed later in this chapter) . But for
video, no resolution is in sight, so if you’re using native video on your site, you
have to encode it at least twice and include multiple sources—or consider pro-
viding a fallback to Flash .

If you simply must have media available to everyone, you can include a
Flash object as fallback; if the user’s browser doesn’t have native audio or
video, the plug-in is used instead. And you can put a fallback to the fallback
inside the object element to cover all bases.

<video src="foo.ogv" height="240" width="360" poster="foo.png">
 <object width="640" height="360" type="application/x-shockwave-flash" data="foo.swf">
 <param name="movie" value="foo.swf">
 <param name="flashvars" value="controlbar=over&image=foo.png&file=foo.mp4">

 </object>
</video>

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia 167

This code is quite lengthy, but it does seem to cover all eventualities.
Kroc Camen developed it, and I recommend you read his article “Video
for Everybody!” to see all of the notes and caveats that I was unable to
include here (see “Further Reading” on page 175).

Subtitles and Captions
You can add optional text tracks to run alongside the media file; these could
be subtitles or captions for video files, or associated metadata files for either
media type. You can have as many tracks as you like—for example, different
languages for subtitles or a caption track and a metadata track—and each is
added with a track child element.

This element has a few key attributes: kind tells the browser the pur-
pose of your track—subtitles, captions, and descriptions are among the possible
values; src describes the path to the file; srclang is the language of the track;
label is the description of the track shown to the user if multiple options
are available (if the browser UI supports it); and the Boolean default sets the
track to use if more than one is available or ensures that a track is shown
even if the user hasn’t explicitly requested one (only the first instance is
recognized).

The following code shows how you might offer subtitles in two different
languages—English and Brazilian Portuguese—on the video element:

<video src="foo.ogv">
 <track kind="subtitles" src="foo.en.vtt" srclang="en" label="English" default>
 <track kind="subtitles" src="foo.pt.vtt" srclang="pt-br" label="Brazilian Portuguese">
</video>

You can see an example of subtitles in the file video-subtitles.html and in
Figure 9-3. If your browser’s native video UI supports it, try changing the
language of the subtitles.

Figure 9-3: Subtitles added using the track element

www.it-ebooks.info

http://www.it-ebooks.info/

168 Chapter 9

Different browsers accept different types of files for subtitles and cap-
tions, but the emerging standard is known as WebVTT. This format is simple,
displaying captions from a start time to an end time. Here’s an example:

WEBVTT

1
00:00:00.500 --> 00:00:04.000
Hello to all readers

2
00:00:06.000 --> 00:00:10.000
Thanks for reading this book

The first caption appears on screen after half a second and is shown
until the fourth second; the second caption appears in the sixth second and
is shown until the tenth second. Although extra configuration options are
available, the core has been kept very simple.

Encoding
You have many different variables to consider when encoding video for the
Web; for example, my experience is that some files encoded for iOS may not
play on Android, and vice versa. If you’re happy using the command line,
then FFmpeg is your best bet; it’s a free and open source encoder that’s
extremely configurable. You need to give it the path to the source video,
a series of (optional) encoding parameters, and then a path to the output
file. Here’s a simple example, converting from AVI to MP4:

ffmpeg -i foo.avi foo.mp4

If you prefer a GUI, there are many video-encoding tools available, but
I rely on two that are easy to use and free. Miro Video Converter is a Mac or
Windows program handy for quick conversions; you simply drag a file into
the app, choose an output mode from a list that includes MP4, Ogg Theora,
and WebM, and the tool outputs the converted file for you. If you prefer to
have more options to control your conversions, HandBrake is probably the
easiest and most powerful tool, although it outputs only MP4 so you may
need to convert to Miro anyway. Both these tools are graphical shells for
FFmpeg.

Media fragments
On occasion you may want to play only a portion of a media file, but you
don’t want to edit the clip manually. You can do this with JavaScript, as
you’ll see in the next section, but many browsers also support the Media
Fragments URI. This information is appended to the URL of the media

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia 169

file, which sets certain parameters on it. To set a time range, as in this
notional example, you would use something like this:

<audio src="foo.oga#t=4,8"></audio>

The #t notation is a shortcut for a time range, with the two comma-
separated values after it representing the start time and end time in seconds.
In this case, the clip would play for between four and eight seconds. You can
leave out either number; leaving out the first means “play from the start until
this point,” and leaving out the second means “play from this point until the
end.” Either way you must still include the comma. So to play from 7.5 sec-
onds until the end, you would use this:

<video src="foo.oga#t=7.5,"></video>

The Media Fragments URI module contains many more options than
time range, but this is the only option that currently has widespread adop-
tion in browsers.

The Media API
One of the complaints about using plug-ins to display audio and video is that
they are dumb elements on the page; you can’t interact unless the plug-in
specifically makes itself available. The HTML5 media elements, however,
have the big advantage of an extensive API that allows you access to infor-
mation about the media file and makes interacting simple. You access the
API through a set of interfaces: Each media element has shared properties
and methods in the HTMLMediaElement interface; audio also has the unique
HTMLAudioElement interface; and video has HTMLVideoElement.

The first two methods I’ll introduce have obvious functions: They are
play() and pause(), and are simply applied to the media element. Given unique
controls on a page, you might end up with a script like this to control them:

var pause = document.getElementById('pause'),
 play = document.getElementById('play'),
 video = document.getElementById('video');
pause.addEventListener('click', function () {
 video.pause();
}, false;
play.addEventListener('click', function () {
 video.play();
}, false;

Separate buttons seem somewhat wasteful, so combining them into a
Play/Pause button is more efficient. You can do this by adding an if...else
statement to the code, checking to see whether the video is in a paused state
using the paused property, which is Boolean. You can see this demoed in the
file media-play-pause.html and shown in Figure 9-4.

www.it-ebooks.info

http://www.it-ebooks.info/

170 Chapter 9

var playPause = document.getElementById('play-pause'),
 video = document.getElementById('video');
playPause.addEventListener('click', function () {
 if (video.paused) {
 video.play();
 } else {
 video.pause();
 }
}, false);

Figure 9-4: A simple Play/Pause toggle created using the Media Elements API

The attributes of media elements are mirrored in the API so you can
update them dynamically: preload can get or set the preload attribute and
accepts the same values; autoplay, controls, loop, and muted set the relevant
Boolean attributes; and src updates the path to a different media file. Note
that if you do change the path to a new file, you have to use the load()
method to load the new file into the cache:

video.src = 'bar.oga';
video.load();

Further information about the media file can be obtained through other
properties. The currentSrc property returns the URL string of the file that’s
currently being played; when you have multiple source elements, this lets you
know which element the browser is currently using (depending on formats
and media queries). The currentTime property returns a value, in seconds, of
the current playback point; you can also use this property to set the time,
handy if you want to build your own controls with a seek bar:

video.currentTime = 4.5;

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia 171

If the user has interacted with the seek bar and the media is in the pro-
cess of moving to a new position to resume playback, the seeking property
returns true. You can get the duration of the media with the duration prop-
erty and the time that playback begins with initialTime; both also return a
value in seconds.

As an example of what you can use these timing properties for, take a
look at the following code. In it, I’ve defined the video element and a progress
element for measuring the progress through the video file. What I want to
do is change the value of the progress bar to measure the progress through
the video; this rate is determined by dividing the currentTime value by the
duration.

To make this work, I rely on the new timeupdate event. I explain this
more fully in “Media Events” on page 173; for now, you just need to know
that the event is fired when the current time of the media file changes,
such as when the file is being played. When it does fire, the progress bar
is updated to show the current progression. You can try this for yourself
in the file media-progress.html, shown in Figure 9-5.

var progress = document.querySelector('progress'),
 video = document.querySelector ('video');
video.addEventListener('timeupdate', function () {
 progress.value = video.currentTime / video.duration;;
}, false);

Figure 9-5: A progress bar using Media Elements API timing properties

You can get or set the volume with the volume property, the value of which
is a number between 0 and 1. This property is useful if combined with a range
element to create a custom control, as in the following code example. When
the range element changes value, the change event fires and updates the volume

www.it-ebooks.info

http://www.it-ebooks.info/

172 Chapter 9

property with the current value divided by 100 (to match the scale of the
volume). You can try this for yourself in the file media-volume.html and see it
in Figure 9-6:

var video = document.querySelector('video'),
 volume = document.getElementById('range');
volume.addEventListener('change', function (e) {
 video.volume = e.currentTarget.value / 100;
}, false);

Figure 9-6: The range element controls the video’s volume. With this, the video
now has basic controls made using HTML elements and the Media Elements API.

The previous three code examples show how easily you can build cus-
tom media controls using HTML5 forms and UI elements; with a little extra
work, you can replicate all of the basic media UI functionality and go even
further to create completely tailor-made interfaces on your websites.

Network and Ready States
Media files tend to be quite large and don’t load all at once. Knowing a
couple of things about them is useful: their current loading state and readi-
ness to be played.

You can learn the first part using the networkState property, which has
four value states: 0 means there is no data yet, 1 means the network is idle, 2
means the media is loading, and 3 means the media has loaded. You might
use this property to add an on-screen indicator while the media is loading:

if (video.networkState === 2) { ... }

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia 173

Perhaps more useful though is the readyState property. This property
is similar to the previous one in that it has value states, but these report on
the readiness of the media to be played—whether it has loaded the meta-
data, loaded the file fully, and so on. The five states are:

•	 0 when no information about the media is available

•	 1 when the metadata of the media has loaded

•	 2 when data is available about the current frame or playback position

•	 3 when information about the current frame and at least the next one is
available

•	 4 when sufficient data and an acceptable download rate are available so
the media can be played through to the end

For example, you might want to run a function only when metadata has
loaded, say, to obtain a video’s duration. To do this, you need to check that
the readyState is at least 1:

if (video.readyState > 0) { ... }

Doing this requires constant polling (perhaps using setInterval()),
so it’s not an optimal solution in all situations. A better solution is to get
the browser to report this using an event, which I cover in “Media Events”
below.

Extra Properties for Audio and Video
In addition to the shared properties and methods of all media types, both
audio and video have a unique interface. The HTMLAudioElement interface has
just a single extra method, audio(), which is a constructor used to create a
new audio element. You can optionally add in a source URL as an argument:

var audio = new Audio('foo.oga');

The HTMLVideoElement interface contains a series of properties regarding
the video’s appearance. You can use the poster property to get or set the
poster attribute. The remaining four attributes regard dimensions: height
and width are used for the dimensions of the element, whereas videoHeight and
videoWidth are the dimensions of the video as it displays within the element.

Media events
JavaScript events are fired during the course of loading, playing back, and
interacting with media files, providing plenty of scope for attaching event
handlers. Let’s begin with events for the multiple stages of the readyState
property: State 1 is represented by loadedmetadata, state 2 by loadeddata, state
3 by canplay, and state 4 by canplaythrough.

www.it-ebooks.info

http://www.it-ebooks.info/

174 Chapter 9

For example, the following code logs a message into the console when
a video file has reached state 4—that is, sufficient data is available for the
media to play through until the end:

video.addEventListener('canplaythrough', function () {
 console.log('Can play through.');
}, false);

For the playback state, playing is fired when the media is first played and
pause when playback is paused. If playback is restarted after a pause, the play
event fires, and when the media reaches the end, ended fires. If playback is
interrupted for some reason—for example, if the media is playing but the
user restarts it manually from the beginning—the abort event is fired.

The volumechange event fires when the volume property value changes
or the muted attribute is toggled, seeking when the seek bar is being used,
and seeked when the seek operation ends. When the currentTime property
updates, the timeupdate event fires.

Advanced Media Interaction
Just the two media elements (plus their associated API) that you’ve seen so
far in this chapter provide many more options for media than developers
have ever had in the past, but this is only the beginning. Plans are already
underway to provide far more granular control and extensibility to playing
media natively in the browser, with advanced audio capabilities and peer-to-
peer data connection acting as the vanguard.

Web Audio API
For people who want to go beyond simple playback of audio files, an emerging
standard called the Web Audio API aims to provide high-level processing
and synthesizing of audio in web applications. The Web Audio API is based
on the concept of Audio Routes, a common tool in sound engineering (but
way over my head!).

Like the canvas element, the Web Audio API uses a context, which is
constructed with the AudioContext() method:

var context = new AudioContext();

Going further on this subject is far beyond the scope of this book, and
my own capabilities, but if you’re interested in advanced audio processing,
I suggest you read the article “Web Audio API – Getting Started” on the
CreativeJS site (see “Further Reading” on page 175).

WebRTC
Back in Chapter 6, we looked at the getUserMedia() method. There, I men-
tioned that it’s part of the wider WebRTC project. WebRTC is an exciting

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia 175

proposal aimed at allowing all web-connected devices to communicate with
each other, using audio, video, and data in real-time and using a single stan-
dardized protocol.

At the moment, many tools do this, but all of them require plug-ins or
extra software, and very few actually use the same protocol and are able to
talk to each other, creating a series of “walled gardens” with no way to get
data from one to the other. WebRTC aims to remove those walls.

WebRTC has three key APIs: MediaStream gives access to data streams
such as from a camera or microphone (using getUserMedia()), PeerConnection
allows voice or video communication between devices, and DataChannel
is for generic data communication. As I write this, Chrome and Firefox
have experimental support for all three, and Opera supports MediaStream
through getUserMedia().

As with so much of the media landscape on the Web, however, even
the current WebRTC specification has an uncertain future. An alternative
specification, CU-RTC-Web, has been proposed by Microsoft based on their
experience of owning the Skype platform. Going into detail on either of the
two specs is very probably a fool’s errand, so I’ll leave it at this: Real-time
communication will come to the Web, even if the precise shape it takes is
not currently known.

summary
In this chapter, you’ve learned ways to include media on your page using
the audio and video elements and the many attributes that give you control
over how the media are displayed. You’ve also seen the Media API, which
allows deep interaction with media elements, and the broad range of events
that are fired by media interactions.

I also touched on the future audio APIs—a subject I would like to have
gone into more, but the uncertain landscape prevents me from doing so.
Finally, I talked about the WebRTC project, an exciting set of APIs that
aim to provide amazing new ways for us to swap video, voice, and data
between devices without third-party plug-ins, and a project that really
deserves a book of its own.

further reading
The full text of Steve Jobs’s “Thoughts on Flash” is at http://www.apple.com/
hotnews/thoughts-on-flash/.

Advice on audio and video accessibility around autoplaying is on
the WCAG Audio Control page at http://www.w3.org/TR/UNDERSTAND
ING-WCAG20/visual-audio-contrast-dis-audio.html.

MDN has tables showing the current state of media format implemen-
tation across different browsers at https://developer.mozilla.org/en-US/docs/
Media_formats_supported_by_the_audio_and_video_elements/, and Kroc Camen’s
technique and notes for cross-browser implementation, “Video for Every-
body!”, is at http://camendesign.co.uk/code/video_for_everybody/.

www.it-ebooks.info

http://www.it-ebooks.info/

176 Chapter 9

The best introduction to WebVTT and the track element is on Dev.Opera,
http://dev.opera.com/articles/view/an-introduction-to-webvtt-and-track/, and a use-
ful WebVTT validation tool is on Anne van Kesteren’s website, http://quuz
.org/webvtt/.

I mentioned three encoding tools in this chapter: The FFmpeg
 command-line tool is at http://ffmpeg.org/, Miro Video Converter at http://
www.mirovideoconverter.com/, and HandBrake at http://handbrake.fr/.

The W3C’s Media Fragments specification is at http://www.w3.org/TR/
media-frags/.

MDN has the best documentation of the Media API and Events that I’ve
found at https://developer.mozilla.org/en-US/docs/DOM/HTMLMediaElement/
and https://developer.mozilla.org/en-US/docs/DOM/Media_events/, respectively.

CreativeJS has a great introductory article on the Web Audio API at
http://creativejs.com/resources/web-audio-api-getting-started/.

You can expect to hear a lot more about WebRTC in the future,
but Sam Dutton wrote a good introduction at HTML5 Rocks: http://
www.html5rocks.com/en/tutorials/webrtc/basics/. Microsoft’s intro duction
to the CU-RTC-Web proposal is on the Interoperability blog at http://
blogs.msdn.com/b/interoperability/archive/2012/07/28/customizable-ubiquit
ous-real-time-communication-over-the-web-cu-rtc-web.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

10
W e b a P P S

So far, most of this book has been
about web technologies that can be used

anywhere, from open websites to device-
specific web apps. In this chapter, I’ll take a

short detour to talk about the extra steps required to
create applications—how you can adapt your site to
make it available through an online application store,
or even to make it installable on a device.

Before moving on to talk about the mechanics of creating applications,
we should start by defining the core types:

•	 Native apps are built using non–web technologies for specific platforms
such as OS X, iOS, Windows, and Android.

•	 Web apps use web platform languages and can include hosted websites
or ones packaged inside compressed containers and installed on a device.

•	 Hybrid apps use web platform technologies but are wrapped or packaged
inside native containers.

www.it-ebooks.info

http://www.it-ebooks.info/

178 Chapter 10

In this chapter, I’ll look specifically at the latter two types, web apps
and hybrid apps, and at how to make them available through some of the
many application stores. But even that’s not as simple as it sounds: Many
rival platforms and stores exist, each has a different development platform
and submission process, and there isn’t a single standard way of defining
an app (although there are a number of proposals to do so).

The good news is that many new app stores recognize the benefit of
using web platform technologies to attract developers: huge time and money
savings from not having to create an app multiple times in a different pro-
gramming language for every platform. Many vendors, including Microsoft
(Windows 8), Samsung (Smart TV), and Opera (Opera TV Store), use web
platform technologies to power their apps. Although not quite a case of
write once, run everywhere (you still have to consider each device’s unique
APIs, and levels of browser support), developing a web app can be much
more efficient than developing multi-platform native apps in both Java for
Android and Objective-C for iOS.

In addition to discussing the different methods of building apps, I’ll
also look at ways to make resources available offline and how to store them
on a user’s device when a network connection isn’t available (something
that’s still pretty common even in today’s wireless age). You accomplish
this through the application cache (commonly known as AppCache), which,
although quite powerful, is not without its pitfalls.

Web Apps
I’ll begin by looking at web apps, that is, apps built entirely using web plat-
form technologies. Although called web apps, they don’t necessarily have to
exist on the open Web; they can also be packaged and distributed through
online stores for download onto devices. There are, of course, many online
stores, but I’ll look specifically at two with the lowest barriers to entry: the
Chrome Web Store, which has been around for a few years, and the newer
Firefox Marketplace. While both are created by browser vendors, the big
difference between them is that the Chrome Web Store works only in the
Chrome browser, whereas the Firefox Marketplace is aimed at creating an
open standard that any browser can use.

Hosted vs. Packaged Apps
Before moving on to look at the different app store requirements, let’s take
a few minutes to define two subdivisions of web apps: hosted and packaged.
Although most web app stores accept submissions of either, each type of
app has certain advantages or disadvantages (largely around restrictions
or permissions to core device functions), which are useful to know about
in advance to help you choose the right approach to building your app.

www.it-ebooks.info

http://www.it-ebooks.info/

Web Apps 179

Hosted Web Apps

A hosted app is one that holds all files on an external web server, usually
accessible via a public URL. Essentially, a hosted app is like a website with
a little extra metadata to allow app stores to index it. A hosted app isn’t
installed onto a device; a shortcut is created on the device that launches
a browser or embedded web view when the user decides to open the app.

Hosting a web app has the advantage of allowing you, the developer, to
make updates without requiring reauthorization from a store, but the flip
side is that the security risk is higher (an evil developer could smuggle in
compromising code), so hosted apps generally don’t get access to restricted
device APIs.

Packaged Web Apps

Unlike hosted apps, a packaged app contains all the assets necessary to run
it, compressed (usually zipped) in a single file. All the files are installed on
the device, and although the app can connect to external web services, such
a connection isn’t always required. Packaging an app in this way means the
store owner can review and authorize the app’s contents and grant extra per-
missions if the app is found to be secure; in practice, this means the devel-
oper can access restricted APIs on the device, such as those used to access
the address book or text messaging functions.

Packaged apps open and shut more quickly than hosted ones because
all their files are held on the user’s device, so they’re less dependent on
network capabilities. But packaged app developers need to be sure to store
data locally and allow it to be synced to the data server while online, which
requires more development work. To help with this, you can use local storage
(discussed in Chapter 6), but for more extensive offline access options, you’ll
want to use AppCache, which I cover in “Application Cache” on page 185.

Manifest Files
Regardless of whether an app is hosted or packaged, every app designed
for an app marketplace has to contain some data that’s formatted or pre-
sented in a specific way in order to identify it as an app that belongs in that
particular store. Usually this process involves no more than filling in a few
required data fields and adding an icon to display on the target device,
both of which are contained in a manifest file.

The manifest file is a simple XML or JSON text file hosted somewhere
in the folder that holds your site assets. It contains key information about
the app, including its name and description, although the required infor-
mation varies slightly between stores, as I explain in the following sections.

The Chrome Web Store

When hosted by the Chrome Web Store, the manifest file must be JSON-
formatted, named manifest.json, and stored in a folder called myapp in the

www.it-ebooks.info

http://www.it-ebooks.info/

180 Chapter 10

app’s root folder. The following annotated code shows a short example
of manifest.json for the Chrome Web Store, with the bare minimum of
required fields.

{
u "name": "App Name",
v "description": "Short description",
w "version": "0.1",
x "manifest_version": 2,
y "icons": {

 "128": "icon_128.png"
 },

z "app": {
 "launch": {
 "web_url": "http://foo.example.com/"
 }
 }
}

The first item u in the manifest is the name of your app. Next v is the
description, which should be 132 characters (or fewer) in length and con-
tain no HTML. The version property w is the custom release version of your
app, which is handy for bug reporting and informing users of updates. The
manifest version x tells the Chrome Web Store that you’re using the most
up-to-date manifest format (version 1 will be phased out throughout 2013).

The icons object y is a list of image files that are to be displayed at dif-
ferent resolutions, depending on where they will be shown (such as on a
device desktop or in a list of apps); here, the file icon_128.png will be used
whenever a 128×128px icon is displayed. Finally, the app object z contains a
web_url subfield, which includes the URL of the page to be displayed when
your app launches.

The Firefox Marketplace

The manifest required by the Firefox Marketplace is known as an Open
Web App Manifest. As the name implies, Mozilla is hoping this format
becomes a general standard for web apps, as a way to simplify the process
of submitting a web app to multiple stores in the future. This manifest is
usually called manifest.webapp and served with the MIME type application/
x-web-app-manifest+json. Full instructions can be found in the slides of
Robert Nyman’s talk “WebAPIs and Apps” listed in “Further Reading” on
page 188.

The Open Web App Manifest file is JSON-formatted and, by design,
similar to that of the Chrome Web Store. The listing here shows a minimal,
annotated example.

{
u "name": "App Name",
v "description": "Short description",

www.it-ebooks.info

http://www.it-ebooks.info/

Web Apps 181

w "version": "0.1",
x "launch_path": "http://foo.example.com/",
y "icons": {

 "128": "icon_128.png"
 }
}

The name u and version w fields and the icons object y are the same
as previously described for the Chrome Web Store. The description field v
is the same too, except that its length can be up to 1024 characters. The
biggest difference is the launch_path x field, which has the same behavior
as app > launch > web_url in the Chrome manifest. No manifest version is
required, although one could be added as an extension when submitting
the app to the Chrome Web Store (which requires it).

W3C Widgets
The W3C has developed their own standard for packaged web apps, known
in their parlance as widgets. Widgets work like other packaged web app for-
mats, except that the manifest file (called config.xml) is in XML format, and
all the files are zipped with the suffix .wgt.

As it’s in XML, the manifest file is a little different from the ones I’ve
already shown you, although most of the information in it should be familiar:

<widget version="0.1">
 <name>App Name</widgetname>
 <description>Short description</description>
 <content src="http://foo.example.com"/>
 <icon src="icon_128.png"/>
</widget>

Having been around for a while, widgets are considered quite stable,
but they don’t have many implementations in the modern device environ-
ment. The Opera browser uses a widget as a base for its extensions specifi-
cation, but the largest current user of the widget is probably the PhoneGap
project, which I cover next.

hybrid Apps
If you want to publish your web apps through the big device app stores—
such as the Apple App Store, Google Play, or the Windows Store—you need
to create a hybrid app. These apps are similar to packaged apps in that all
their resources are contained in a single archive, but they go one step fur-
ther by adding a native shell, or wrapper, around the files, which ensures
that the app can be integrated into the main operating system, providing
security and better performance and also allowing access to restricted device
APIs. A number of software solutions exist for making hybrid apps, but one
of the most common—and certainly the easiest to learn—is PhoneGap.

www.it-ebooks.info

http://www.it-ebooks.info/

182 Chapter 10

PhoneGap
Although owned by Adobe, a commercial entity, PhoneGap is free, open
source software that allows you to build semi-native mobile applications
using web platform technologies. PhoneGap is a distribution of software
called Apache Cordova, which used to be called PhoneGap before it was
sold to Adobe and things became complicated. The names are often used
interchangeably, but I’ll stick to calling it PhoneGap for consistency’s sake.

PhoneGap works across multiple platforms, chief among them iOS,
Android, and Windows Phone, and one of its major selling points is that,
as it’s a native OS wrapper around web platform code, it allows access to
APIs on a device that are not always available through the browser. For this,
it uses its own API, which matches standard APIs from each device where
present, acts as a bridge when devices have differing implementations of an
API, and otherwise creates new methods and objects where necessary.

To set up PhoneGap, you need to download the SDK for each device
you want to target and, in some cases (notably for iOS), also get a devel-
oper certificate. When you’ve done all this, you complete the setup for each
environment (full instructions are on the PhoneGap website, linked to in
“Further Reading” on page 188) and start a new project, which creates a
folder structure with a few key files, including the ones necessary for access
to the API.

Granting Permissions

Once your setup is complete, you can add all the files to the project that
your app needs to run, and then begin to take advantage of the PhoneGap
API. Some of the properties in the API require that you add permission
requests to a manifest file because (as I mentioned earlier) PhoneGap uses
the XML-based widgets specification for requests. For example, to request
access to the Notification API, you include the following XML element in
the file config.xml:

<plugin name="Notification" value="org.apache.cordova.Notification"/>

Some platforms require no extra permissions, or make some methods
available without requiring permissions, whereas others insist on permis-
sion requests for all methods. The API documentation has full details.

The PhoneGap API

The PhoneGap API is largely composed of a series of properties and
 methods on the navigator object. Some of these properties are already
 available through browsers. When they are, as with the geolocation object
you learned about in Chapter 6, PhoneGap’s API chooses the native imple-
mentation first, falling back to its own implementation on systems where
the property is not available.

www.it-ebooks.info

http://www.it-ebooks.info/

Web Apps 183

Other properties require heightened permissions and, as such, are
available on some platforms exclusively through PhoneGap. For example,
consider the contacts object, which provides access to the user’s contact list—
not something you want exposed to the Web without special authorization.

The contacts object has two functions: create() and find(). To select
items from the contacts list, you use the latter with two required arguments:
contactFields (a list of fields to return) and contactSuccess (a function to be
run when a successful query takes place).

In the following code, I set up a query to get the display name and
birthday of all contacts in the address book; then if this query is success-
ful, it runs an anonymous function. This function loops through all of the
results (in the contacts object I defined) and adds them to a string called
contactDOB, which I use here to populate a list.

navigator.contacts.find(['displayName','birthday'], function (results) {
 var i, contactDOB;
 for (i=0; i < results.length; i++) {
 contactDOB += '' + results[i].displayName + '(' + results[i].
birthday + ')';
 }
});

Future browsers and web-based operating systems (such as Firefox OS)
will probably provide direct access to some of these methods in the future,
meaning the long-term future of PhoneGap will likely be in polyfilling
features on legacy devices. PhoneGap’s developers are cognizant of this, as
stated clearly in a blog post called “Beliefs, Goals and Philosophy”:

The ultimate purpose of PhoneGap is to cease to exist.

PhoneGap Events

In addition to its device properties API, PhoneGap also has a number of
extremely useful events that register changes to the device’s status, from its
network status and capability to the battery level. These events are critical if
you want your app to provide users with the best possible experience, such
as ensuring data is saved before a battery runs out or when network connec-
tion is lost.

The most important event is deviceready, which fires when PhoneGap
has fully loaded and is ready to execute. The deviceready event is function-
ally identical to the DOMContentLoaded event you saw in Chapter 5 in that it
also should be used in every script to ensure that all required libraries
have been loaded and are in place before the rest of the scripts are run.
As such, all of your functions that require access to the PhoneGap API
should be run in the callback function:

document.addEventListener('deviceready', function () {
 // All PhoneGap-related functions
}, false);

www.it-ebooks.info

http://www.it-ebooks.info/

184 Chapter 10

Other events include pause and resume. The former is fired when the cur-
rent application is closed and moved to a background process, and the lat-
ter when it becomes active again. For example, you may want to store data
when the application is moved to a background process to make sure users
doesn’t lose their work:

document.addEventListener('pause', function () {
 // Backup data
}, false);

Some events fire when an application disconnects or reconnects from
a network (offline and online); when the volume or call buttons are pressed
(volumedownbutton, volumeupbutton, startcallbutton, and endcallbutton); and
when the battery status changes (batterystatus detects changes in status,
whereas batterylow and batterycritical fire when the battery is low or in a
critical state, as defined by the device).

Titanium
Another popular approach to publishing hybrid mobile apps is Appcelerator
Titanium. Rather than acting as a wrapper around a web app like PhoneGap,
Titanium is an SDK that lets you develop applications with JavaScript using
native UI elements from the target device platform. This approach has the
advantage of making your app look and feel more like a native app, but it
requires that you write it in a way that isn’t compatible with the standard
open web platform approach.

For that reason, I won’t cover Titanium further in this book, although
knowledge of its existence is useful.

Tv Apps
So far in this chapter I’ve covered mostly mobile device development, but
a new and thriving area lies in development for Internet-connected smart
TVs. The big players in this arena include device manufacturers Samsung,
Sony, and Panasonic; plug-in box makers Roku and Boxee; and the browser
vendor Opera. Installable apps on smart TVs are generally seen as a good
idea, as it’s easier to navigate a series of icons than it is to type long URLs
when using a remote control.

Early smart TVs had proprietary and conflicting app development
platforms, but 2012 saw a sector-wide move toward web platform technol-
ogies that made developing for TV much less demanding. Each party to the
development maintains their own developer program and documentation,
some of which is free. If you’re interested in developing in this area, Opera’s
developer portal has some great articles and tutorials on best practices (see
“Further Reading” on page 188).

www.it-ebooks.info

http://www.it-ebooks.info/

Web Apps 185

Webinos
If your goal is to develop for true cross-device communication, you may
want to consider the Webinos framework. This open source, browser-based
application platform is co-funded by the European Union together with
major players such as BMW, Samsung, Sony, and the W3C. It’s intended to
simplify communication between devices, ranging from in-car systems to
mobile devices to your TV.

Because Webinos is browser based, it uses web platform technologies;
it’s even built on top of Node.js and uses HTML5 WebSockets for commu-
nication. The first release was in 2012 and development is ongoing, but its
potential is already exciting.

Application cache
Users have certain expectations of website-delivered apps, notable among
them is that the apps should work offline or at least save data if the con-
nection is lost. One way to provide offline assets is to save the data in local
storage using the API I talked about in “Web Storage” on page 117, but a
better approach might be to use the Application Cache, or AppCache. This
is an interface that lists files that should be downloaded by the user agent
and stored in the memory cache for use even when a network connection is
unavailable.

The first step in making an AppCache is to create a manifest file, a text
file with the suffix .appcache, which must be served with the text/cache-manifest
MIME type. Link to this manifest using the manifest attribute of the html ele-
ment on every page that you want to make available offline:

<html manifest="foo.appcache">

Some browsers alert the user that
your application is asking to store files
offline and request permission to do
so. Figure 10-1 shows how this looks in
Firefox on Android.

You need to consider a number
of gotchas with the application cache
if you’re thinking of using it on your
site. These were exhaustively listed in
Jake Archibald’s article “Application
Cache is a Douchebag,” published on
A List Apart (see “Further Reading” on
page 188). I touch on a few of these in
the following sections.

Figure 10-1: Some browsers, such as
Firefox, request permission from the
user before allowing AppCache to
store files.

www.it-ebooks.info

http://www.it-ebooks.info/

186 Chapter 10

Contents of the AppCache File
The .appcache file begins with the words CACHE MANIFEST and then follows with
a list of all files that should be cached. Each file is on a new line, and you
can add single-line comments by entering a hash (#) at the start of each line.

The following listing shows a manifest file that stores three files in the
cache. The comment with the version and date isn’t required but will come
in handy later:

CACHE MANIFEST
Version 0.1, 2013-04-01
index.html
foo.css
foo.js

You don’t need to explicitly list the pages to which the .appcache file is
linked, because any page that includes the manifest attribute on the html
element will be cached by default. These automatically cached pages are
known as master entries, whereas files listed in the manifest are known as
explicit entries. If some files require online access (such as access to a data-
base using JavaScript), you can create a kind of whitelist of files to always
be loaded over the network by listing them after the NETWORK: header. These
files are known as network entries.

In the following example, files listed in the /dynamic folder will be loaded
over the network instead of from the cache:

NETWORK:
/dynamic

You can also add fallback files in case an attempt to load a resource
fails, owing to the loss of a network connection or something else. You do
this below the FALLBACK: header, where each new line lists a file or folder
with the fallback file after it, separated by a space.

In the following example, if any file from the /templates folder fails to
load the page, fallback.html will be displayed from the cache instead:

FALLBACK:
/templates/ fallback.html

These files are known as fallback entries and, along with the three previ-
ous entries, complete the categories of file that will be cached.

The Caching Sequence
When the browser loads your page, it first checks for the manifest file. If the
manifest exists and hasn’t been loaded before, the browser loads the page
elements as usual and then fetches copies of any files that are in the mani-
fest but haven’t yet been loaded. The browser stores all the listed entries in
the cache to be loaded on the next visit.

www.it-ebooks.info

http://www.it-ebooks.info/

Web Apps 187

If the manifest file exists and has been loaded before, the browser
loads all the files held in the cache first, followed by any other files that
are required to load the page. Next, it checks to see if the manifest file
has been updated and, if so, downloads another copy of all the listed files.
These files are then saved into the cache and used the next time the page
is loaded; they won’t be presented to the user immediately.

One important peculiarity is that in order for the browser to check for
new versions of files to be loaded, the manifest file itself must be changed.
This is where the version number or timestamp comment comes in handy:
Changing either (or both) tells the browser that the manifest has been
updated, and it will then download the updated files.

The AppCache API
If you need to access the cache through JavaScript, you can use the window
.applicationCache object. This object contains some properties and methods
that you’ll find useful if you want to force downloads of updated files after
the initial page load or otherwise interact with the manifest.

The status property returns the current status of the cache, with a
numeric value and named constant for each state as follows:

•	 0 (UNCACHED) means that no cache is present.

•	 1 (IDLE) means that the cache is not being updated.

•	 2 (CHECKING) means that the browser is checking the manifest file
for updates.

•	 3 (DOWNLOADING) means that new resources are being added.

•	 4 (UPDATEREADY) means that a new cache is available.

•	 5 (OBSOLETE) means that the current cache is now obsolete.

You can force a check of the manifest file using the update() method,
which checks to see if the manifest file has been updated. The update()
method gives the status property a value of 2 while it checks the manifest;
it gives a value of 3 if updated resources exist and are downloading, and a
value of 4 when updated files are ready.

When the status value is 4, you can use the swapCache() method to load
the updated files. At this point, remember the browser has loaded the cur-
rently cached version of some files for the user in order to speed up the page
load, and any updated files in the cache won’t be presented to the user until
the page is reloaded. To get around this, you can use an AppCache event,
which fires at various points of the cache cycle, most notably when the status
property updates. For example, when the status value becomes 2, the checking
event fires, and when it becomes 3, the downloading event fires.

The following code shows one approach to reloading a page with updated
assets. Here, the updateready event fires when a new cache has been down-
loaded and then runs a function that double-checks that the status prop-
erty has a value equivalent to UPDATEREADY (4). If so, updateready swaps
the cache and then asks the user if it’s okay to upload the latest version
of the files by reloading the page.

www.it-ebooks.info

http://www.it-ebooks.info/

188 Chapter 10

var myCache = window.applicationCache;
myCache.addEventListener('updateready', function(e) {
 if (myCache.status === myCache.UPDATEREADY) {
 myCache.swapCache();
 if (confirm('Load new version?')) {
 window.location.reload();
 }
 }
}, false);

By requesting permission to reload the page, this script ensures that the
user doesn’t suddenly lose data or have an action interrupted by a forced
reload. This approach is used by many popular web apps, including Google’s
suite of tools.

summary
In this chapter, we’ve taken a (necessarily) brief look at packaging websites
to act as apps for release through app marketplaces. I discussed the differ-
ence between hosted and packaged apps, the manifest files required for
submitting to two web-based marketplaces, and the W3C’s own manifest
standard. I also covered hybrid apps, which use web technologies in a native
wrapper, and discussed how to use the open source PhoneGap to interact
with a device more deeply than most browsers can. Finally, I discussed
AppCache, a way of storing files on a device to allow offline access. We
looked at what it does and how to access it with JavaScript, and briefly cov-
ered its limitations.

further reading
The Chrome Web Store has in-depth documentation on preparing an app
for submission, including details about the manifest file, at https://developers
.google.com/chrome/web-store/docs/get_started_simple/.

Firefox Marketplace provides details about the manifest file at https://
developer.mozilla.org/docs/Apps/Manifest/, and it has a useful manifest validation
tool at https://marketplace.firefox.com/developers/validator/. Robert Nyman’s
talk “Web APIs and Apps” is a great primer for building apps for the Firefox
Marketplace: http://www.slideshare.net/robnyman/web-apis-apps-mozilla-london/.

The latest version of the W3C widgets specification is at http://w3.org/TR/
widgets/, and you’ll find a useful introduction on Peter-Paul Koch’s site—
even though it was written a few years ago, and some small details of the
spec have changed since then: http://quirksmode.org/blog/archives/2009/04/
introduction_to.html.

The PhoneGap project is at http://phonegap.com/, and the API doc-
umentation is at http://docs.phonegap.com/. You can read the PhoneGap
 article “Beliefs, Goals, and Philosophy” at http://phonegap.com/2012/05/
09/phonegap-beliefs-goals-and-philosophy/.

www.it-ebooks.info

http://www.it-ebooks.info/

Web Apps 189

You can read more about the Titanium project at http://appcelerator.com/
platform/.

Each smart TV platform has its own developer forum, but a good example
for getting started is Samsung’s site at http://www.samsungdforum.com/.

The Opera TV Store is gaining some traction as a custom-made solu-
tion; learn more about it at http://business.opera.com/partners/tv/store/. The
Dev.Opera site has some great reference articles on designing and develop-
ing for TV at http://dev.opera.com/tv/.

The Webinos project, which aims to create a standard common device
API, is hosted at http://www.webinos.org/.

The Mozilla Developer Center has great AppCache documentation
at https://developer.mozilla.org/en-US/docs/HTML/Using_the_application
_cache/, and Mark Christian and Peter Lubbers created a handy page of
AppCache facts at http://appcachefacts.info/. For all of AppCache’s draw-
backs and tips and techniques for using it, read Jake Archibald’s “Appli-
cation Cache is a Douchebag” at A List Apart: http://www.alistapart.com/
articles/application-cache-is-a-douchebag/.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11
T h e f u T u r e

So far in this book I’ve aimed to discuss
only those web features that are pretty

 stable in at least a few browsers, or that
should be stable sometime in the near future.

But now that we’ve arrived at this last chapter, I can
really cut loose and talk about some of the more
experimental features on the horizon.

Changes are planned everywhere: A new revision of JavaScript, code-
named Harmony, is due for release sometime in 2013 and should make
its way into browsers over the coming years; many new APIs are being pro-
posed to the W3C, including one for discovering devices on the same net-
work using Universal Plug and Play (UPnP) and one for measuring ambient
light; work on the draft specification for HTML5.1 is well underway; and
many CSS modules are already moving to Level 4. I could talk about any
number of changes, but I’ll focus on the ones that I think will have the
greatest impact on the way we work and that have a good chance of being
implemented.

www.it-ebooks.info

http://www.it-ebooks.info/

192 Chapter 11

Web components
I don’t think I’m exaggerating when I say that the Web Components speci-
fication proposes the most radical changes to HTML since its creation
some 20+ years ago. Even the much-hyped HTML5 is a small point-version
update that doesn’t really add anything genuinely new.

Web Components is a collective title for a group of additions to HTML
and the DOM aimed at making rich interfaces for web applications—a
kind of reusable widget specification. As I write this, four main compo-
nents exist: templates, decorators, custom elements, and the Shadow DOM. I’ll
explain what each does in turn, but first let me sum up what they do when
combined.

One of the principal problems of building application components in
HTML today is that the elements used to build them are part of the DOM
and, as such, are open to conflicts from CSS or JavaScript. These could be
inheritance conflicts, such as rules applied to parent elements cascading
into component elements or, inversely, rules applied to component elements
leaking or cascading to elements elsewhere in the DOM.

Another problem results from naming conflicts, where the same class
or ID is unknowingly used in different pages of a site, meaning rules inten-
tionally declared on one element are also unintentionally applied to others.
This problem is commonly found on large sites that lack a clear naming
scheme, and it can be made even worse by conflicts in JavaScript when selec-
tors apply unwanted functional behavior to an element.

The best way to avoid conflicts like these is to separate the component
from the rest of the DOM to prevent any inheriting or leaking. This tech-
nique is known as encapsulation and is fundamental to object-oriented pro-
gramming languages.

Web Components attempts to bring encapsulation into the HTML
DOM by allowing you to create elements that appear only in the rendering
of a page, not in the DOM itself. Web Components will offer a way to build
widgets that can be reused across many different pages on a site without
having to worry about conflicts with existing CSS and JavaScript, since the
widget lives in a parallel DOM.

The Web Components spec is still in the draft stage as I write this, so I
won’t explore the concepts in great detail, but I will cover the basics since it
could be so significant.

Templates
Probably the easiest way to grasp Web Components is with an understand-
ing of templates. The idea of developing with reusable blocks of code, or
templates, has been a staple of web development for quite some time, although
we’ve never seen a native implementation in HTML; server-side languages
or JavaScript (such as the Mustache library from Chapter 5) have been
required in order to use templates.

Think of a Web Component template as a kind of inert block of DOM.
The significance of this is that the contents are parsed, but not rendered, by

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 193

the browser. This means images and other external elements aren’t loaded
and included scripts won’t run, which can be a real performance boost com-
pared to hiding elements with CSS, where assets are still loaded.

A template is declared with the template element, and any child ele-
ments form the content of the template. The following code block shows a
template element with the id #foo, which has two child elements (an h2 and
a p). Outside of the template is a div with the id #bar, which contains an h1
element.

<template id="foo">
 <h2>Gorilla Beringei</h2>
 <p>A species of the genus Gorilla...</p>
</template>
<div id="bar">
 <h1>Eastern Gorilla</h1>
</div>

If you were to view this page with your browser’s developer tools, you
would see the template element with no content inside it because, essentially,
the contents of this element are invisible to the DOM.

You access the template through script using the content object, which
returns the child elements of the template as an HTML fragment. For
example, you can see that the next code snippet assigns the template to
the variable tpl and logs its content object to the console:

var tpl = document.getElementById('foo');
console.log(tpl.content);

Once you have the fragment, you can manipulate it as you see fit.
The following code uses cloneNode() to create a clone of the content and
appendChild() to add it inside #bar:

var bar = document.getElementById('bar'),
 clone = tpl.content.cloneNode(true);
bar.appendChild(clone);

At this point, you would see this markup if you inspected the DOM:

<template id="foo"></template>
<div id="bar">
 <h1>Eastern Gorilla</h1>
</div>

But the page would be rendered as if it were using this markup:

<div id="bar">
 <h1>Eastern Gorilla</h1>
 <h2>Gorilla Beringei</h2>
 <p>A species of the genus Gorilla...</p>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

194 Chapter 11

You can see it for yourself in the example file templates.html; the output
is shown in Figure 11-1 (see Appendix A for information on current browser
support). Note that in order for the contents of the template element to show
in the DOM, I had to enable the Show Shadow DOM option in my devel-
oper tools; if that option wasn’t enabled, the element would appear to
be empty.

Figure 11-1: The code inspector shows the contents of the template element, which exists
outside the regular DOM.

Code that was inert inside the template element becomes active once it’s
inserted into another DOM element, at which point any external resources
will load, scripts will be parsed, and so on.

Decorators
Decorators extend the utility of templates by allowing you to add custom
markup through CSS. Decorators use the decorator element, which must
have a unique id assigned. Inside the decorator element, you’ll find a template
element with some custom markup and the content element, which is where
the element that the rule is applied to is rendered. Not clear? It took me a
while to get it too.

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 195

Let’s break this down into stages. The following code shows an example
of a decorator. I gave it the unique id #foo (for a change). Inside is a tem-
plate that contains a div, with the content element and an h2 inside that.

<decorator id="foo">
 <template>
 <div>
 <content></content>
 <h2>A great ape!</h2>
 </div>
 </template>
</decorator>

Now imagine that in the main document I have an h1 element with the
id #bar, as in the following code:

<h1 id="bar">Gorilla</h1>

I apply the decorator using CSS and the new decorator property, which
has as its value a url() function containing the decorator’s id.

h1#bar { decorator: url(#foo); }

Once I’ve done this, the markup in the template #foo is added to the
markup of the element #bar, with #bar itself replacing the content element
of #foo. However, this takes effect only at the point of rendering and doesn’t
alter the DOM. Although an inspection of the DOM shows only the element
#bar, the element will be rendered as though the markup were this:

<div>
 <h1 id="bar">Gorilla</h1>
 <h2>A great ape!</h2>
</div>

You can do more with templates and decorators, but to show you more,
I first need to make a brief digression to talk about scoped styles.

Scoped Styles

One of CSS’s greatest strengths is its use of inheritance—that is, the way that
values can cascade through selectors to apply to multiple elements. That
strength can also be a drawback, however, if you’re working on large sites
with many stylesheets, where experiencing the naming and inheritance
conflicts that I mentioned at the start of this section is not uncommon.

Scoped styles are a way to avoid these conflicts. They’re applied in the
document using the style element with the attribute scoped, and any rules
contained therein are inherited only by the children of the element they’re
used in, and won’t be applied anywhere else in the document.

www.it-ebooks.info

http://www.it-ebooks.info/

196 Chapter 11

You can see this in action in the following code: A scoped style tag is
used inside a div element, and the rules applied to the h1 apply only to the
h1 within that element (the one with the id of #foo), and not the one outside
the div (with the id #bar). The scope of the rule applies only to the children
of the div.

<div>
 <style scoped>
 h1 {
 background-color: #333;
 color: #FFF;
 }
 </style>
 <h1 id="foo">Scoped</h1>
</div>
<h1 id="bar">Not Scoped</h1>

Take a look at the example file scoped-style
.html. Here, the h1 with the id #bar follows
the one with the id #foo in DOM order, so
you would expect the rules inside the style
ele ment to apply to both. In fact, the scoped
attribute means the rules apply only inside
the parent div. You can see the result in Fig-
ure 11-2 and in scoped-style.html.

Scoped Styles and Templates

Having the ability to scope styles in this way is
ideal for encapsulation, and it combines espe-
cially well with templates and decorators. Case in point, if I return to an
earlier example using the markup from the first code block in “Decorators”
on page 194, I could create a set of rules to be applied to the original h1 ele-
ment only when the decorator is applied by using a scoped style tag inside
the template element:

<decorator id="foo">
 <template>
 <div>
 <style scoped>
 h1 { color: red; }
 </style>
 <content></content>
 <h2>A great ape!</h2>
 </div>
 </template>
</decorator>

In this case, the h1 element is colored red only when the decorator is
applied. Even better, that color won’t apply to any subsequent h1 element in the
document because of its limited scope—a perfect example of encapsulation.

Figure 11-2: The first h1 has
rules applied to it that do
not affect the subsequent h1
because the rules are scoped
to a different node branch.

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 197

Custom Elements
Although decorators are handy for adding extra presentational markup to
an element, when you want to make more substantial changes, use a custom
element. The key difference between custom elements and decorators is that
the latter are transitory; they can be applied or removed by changing an
attribute or selector. Custom elements, on the other hand, are fixed; they
are applied when the DOM is parsed and can be changed or removed only
with scripting.

A custom element is like an extended template that replaces or enhances
a standard element. You create a custom element with the element element
(this paragraph is going for a new record in the number of occurrences of
the word “element”), which has some new attributes that I’ll discuss shortly.
Inside this element, you can add a template element with new markup, as
well as scoped styles and even a script.

If this sounds a bit confusing, consider this illustration. The follow-
ing code snippet shows a simple example: an element containing a template,
which, in turn, contains a div, which itself contains the content element I
introduced in “Decorators” on page 194. The element has two attributes:
extends, which takes as a value the name of the element that it will extend
(in this case, a button element), and name, a user-defined unique identifier
value (which must start with x- to avoid conflicting with existing elements).

<element extends="button" name="x-foobutton">
 <template>
 <div id="foo">
 <content></content>
 </div>
 </template>
</element>

Once the custom element has been defined, you can apply it to an exist-
ing element with the is attribute. The is attribute is applied to the element
to be extended and takes as a value the unique identifier from the name attri-
bute (x-foobutton) defined on the custom element. Actually, this is simpler
than it may sound:

<button is="x-foobutton">Go</button>

The resulting effect is the same as that of a decorator: The markup of
the custom element extends the markup of the element it’s applied to but
only in the rendered view. Although viewing the DOM shows only the button
element, it renders like this:

<div id="foo">
 <button>Go</button>
</div>

This example is simple, but you can see how the extensibility of this tech-
nique would make it easy to build completely tailor-made widgets that could

www.it-ebooks.info

http://www.it-ebooks.info/

198 Chapter 11

be reused across many documents. As a result, many of the cumbersome wid-
gets we build today (such as carousels, accordions, and date pickers) could
be applied to existing elements without filling the DOM with unnecessary
markup, with the added benefit of implementing encapsulation to avoid
conflicts.

I mentioned earlier that the core difference between a custom element
and a decorator is in the permanence of the markup. One advantage of this
is that scripts can be included in a custom element that will always be pres-
ent (a benefit you can’t rely on for the more impermanent decorators). All
this means you could even define an imperative API for each custom ele-
ment, thereby taking interactivity to a whole new level.

The Shadow DOM
The final piece of the Web Components specification is the Shadow DOM.
This is not only a cool-sounding name for a supervillain, but it’s also a way
to create and access, with script, the elements that exist in the parallel DOM
I’ve shown you in this chapter. Just as decorators use CSS to alter elements
and custom elements use HTML, Shadow DOM uses script to achieve the
same ends.

The Shadow DOM describes the ability of a browser to create a new,
fully encapsulated node tree inside the existing DOM. The browser does
this by creating a shadow root inside an element, which can be traversed and
manipulated like a regular node tree. (A shadow tree won’t show up in the
DOM, but it will be rendered.)

Now for an example. The following code snippet contains some simple
markup: a div called #foo, which contains a single h1 element. This is the
base markup in the DOM, inside which I’ll add a new shadow root.

<div id="foo">
 <h1>Hello, world!</h1>
</div>

Now I’ll add a new shadow root inside the div, and then create and
append a new element to the new root. I explain this code point by point
in the discussion that follows.

var foo = document.getElementById('foo'),
u newRoot = foo.createShadowRoot(),
v newH2 = document.createElement('h2');

newH2.textContent = 'Hello, shadow world!');
w newRoot.appendChild(newH1);

The first thing to note u is the creation of a new shadow root inside
#foo, using the createShadowRoot() method. In the following two lines v,
I create a new h2 element with the text content 'Hello, shadow world! '. And
finally w, I append the new h2 element into my new shadow root.

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 199

When this code executes, users see an h2 element with the text 'Hello,
shadow world! ', but if they viewed the DOM, users would see the original
content, 'Hello, world! '. The h1 element has been completely replaced by
the new shadow node tree. The DOM remains unaffected.

Figure 11-3 shows how this renders in the Chrome developer tools,
with the contents of the shadow root displayed in a new node tree below
the identifier #shadow-root.

Figure 11-3: The shadow root is clearly marked in the DOM tree.

If you don’t want to replace the content in the element in which you’ve
created a new root, you can once again use the content element (again intro-
duced in “Decorators” on page 194) to include the original elements. I illus-
trate this in the following code, where I create the content element and then
append it to the new shadow root. As a result, the user sees the new shadow
h2 first, followed by the original h1, although only the h1 appears in the DOM.

var content = document.createElement(content);
newRoot.appendChild(content);

You can also use templates with shadow node trees. For example, here’s
how to append an HTML fragment of the template #foo content into the
Shadow DOM:

var foo = document.getElementById('foo');
newRoot.appendChild(foo.content);

The Shadow DOM goes even further than this simple example and is
a very powerful and flexible tool. I can’t spend any more time on it here, but
see “Further Reading” on page 209 for some links to more detailed articles.

www.it-ebooks.info

http://www.it-ebooks.info/

200 Chapter 11

Putting It All Together
I’ve only brushed the surface of the Web Components specification, but
I hope I’ve offered enough to get you excited by the possibilities. Web
Components promises to offer fully reusable code components to enhance
existing elements. These components will be fully encapsulated from
the rest of the document and rendered by the browser but not accessible
through the DOM, although a parallel shadow DOM will allow complete
manipulation of and access to the elements inside each component.

If the Web Components specification is implemented, it will revolution-
ize the way we build applications and websites. And if that doesn’t get you
excited, you may be in the wrong business!

The future of css
CSS3 has already revolutionized the Web in some ways, with its introduction
of behavioral aspects such as transitions and animations and by seriously
addressing the problem of layout mechanisms. But those features barely
scratch the surface of what’s to come. Lots of big tech companies are bet-
ting their futures on the Web, and their involvement in shaping the future
of web standards brings with it some incredible innovation.

For example, Adobe’s wholesale embrace of open standards (a pleasant
surprise!) is making it a major player in browser development, and its expe-
rience with graphics and publishing is being applied to CSS. The first fruits
of this labor are CSS Regions and Exclusions, which open up the possibility of
major changes to the way we’ll lay out pages in the future, as dynamic web
pages finally begin to catch up with what desktop publishing has been doing
for years.

But the web development community is having the biggest effect
on the development of CSS. Developer-built JavaScript libraries such as
jQuery and Modernizr are directly influencing the language, as you’ve
seen with querySelector() and querySelectorAll() (back in Chapter 5), and
that influence will be felt further with the introduction of feature queries.

Additionally, the rise in popularity of CSS preprocessors such as Sass
and LESS means that front-end developers are becoming accustomed
to using programming principles, such as variables and functions. The
demand for these to be introduced into the language is manifesting itself
through cascading variables.

Regions
Back in Chapter 4, I discussed CSS columns, where inline content is divided
into columns and flows through the first column and then the second, the
third, and so on. Imagine that those columns are not immediately adjacent
to each other; the first is on the left of the page, the second is on the right,
and the third is at the bottom, but the content still flows sequentially through
them. That’s the gist of a new CSS concept called Regions.

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 201

Regions work like this: An element is declared as a source, and the
content of that source is flowed into another element, or series of elements,
known as a region chain. What that means in practice is you can have content
flowing across multiple elements in a sequence that doesn’t flow in natural
DOM order.

Here’s a simple illustration that starts with three div elements: a #foo
and two .bars. The first, #foo, is filled with content, and the others are empty:

<div id="foo">
 <p>...</p>
</div>
<div class="bar"></div>
<div class="bar"></div>

The next step is to get the content of #foo and put it into a named flow,
kind of like storing it in a variable (or the clipboard on your computer). In
CSS Regions, you create this named flow by declaring the flow-into prop-
erty on the source element (#foo). The value of the property is a unique
name of your choosing, so I’ll name mine myFlow. Having named my flow
(or clipboard, if you’re still following the metaphor), I can flow it into other
elements, which become known as the titular regions:

#foo { flow-into: myFlow; }

W a r n i n g In Internet Explorer 10, the source element must be an iframe, and the content inside
the body of the linked document will become the content of the flow.

When this property is applied, the source element and all its children
are no longer rendered on screen, although they are still visible and acces-
sible in the DOM.

Next I must declare a region chain that the content will be flowed into.
Each element that forms part of the region chain should have the flow-from
property declared on it, the value of which is the previously defined named
flow. The following code shows how to flow the content of the flow myFlow
into all regions called .bar :

.bar { flow-from: myFlow; }

The content in myFlow flows through the region chain in DOM order; it
starts by flowing into the first instance of .bar, and then any overflow flows
into the second instance of .bar, and so on, until the end of the content. Try
this out with the file regions.html, as shown in Figure 11-4.

As I mentioned at the beginning of this section, CSS Regions work like
multiple columns, without the columns needing to be immediately adja-
cent. This new element creates some amazing opportunities for making
dynamic, interesting page layouts, inspired by years of experience with the
possibilities of print media.

www.it-ebooks.info

http://www.it-ebooks.info/

202 Chapter 11

Figure 11-4: Using CSS Regions, you can flow content across multiple elements that don’t
need to be adjacent.

Exclusions
CSS Exclusions can be thought of as a kind of positioned floats—indeed,
an earlier concept described them as exactly that. In CSS2.1 you can float
elements only to the left, where other content flows around their right side,
or vice versa. But the idea of CSS Exclusions is that you can flow content
around an element no matter where it’s positioned on the page.

To illustrate, consider the following markup with a container element
#foo, some text content in a p, and a child element #bar:

<div id="foo">
 <p>...</p>
 <div id="bar"></div>
</div>

I want to position #bar absolutely over the content in #foo, which will
require style rules somewhat like this:

#foo { position: relative; }
#bar {
 left: 20px;
 position: absolute;
}

As written here, #bar sits in a layer stacked above the text content,
obscuring what’s behind it, as you can see in Figure 11-5. But I want to
make #bar part of the same layer and to float the text content around it.
In the parlance of Exclusions, I want #bar to become an exclusion element.

I can accomplish this with the wrap-flow property, which makes the ele-
ment it’s applied to an exclusion element. Any sibling content flows around
it according to the keyword value of the property.

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 203

Figure 11-5: An element that’s absolutely positioned doesn’t affect the flow of the content
beneath it. (This gorilla photo is by Chris Willis and can be found at http://www .fotopedia
 .com/items/flickr-3059127796/. It used under a Creative Commons license.)

The following example uses the keyword value both to make content
flow around both sides of the exclusion element:

#bar { wrap-flow: both; }

You can see the difference this makes in Figure 11-6. The elements are
in the same positions as before, but because #bar has now been declared an
exclusion element, the content in #foo flows around it on both sides.

Figure 11-6: Applying the wrap-flow property makes the positioned element become part
of the document flow, and the content flows around it on both sides.

Alternative values for wrap-flow include:

•	 start to flow the content on the left side (in left-to-right languages) of
the exclusion element, but not the right

•	 end to do the opposite

•	 maximum and minimum to flow content only on the side with the most or
least space (respectively) between it and its containing element

•	 clear to flow content only above and below the exclusion element

www.it-ebooks.info

http://www.it-ebooks.info/

204 Chapter 11

Figure 11-7 shows a few of the different values at work. The first example
has a value of start, so the content flows to the left of the exclusion element.
The next has the end value, so the content flows on the opposite side. And in
the final example, the clear value makes content flow on neither side of the
element.

To permit more control over the flow of inline elements around the
exclusion, you have the wrap-through property. This property takes one of
two keyword values: flow and none. The former, the default, makes inline
content flow around the exclusion element; the latter doesn’t. This is use-
ful if you want to enable content flow on a per-element basis.

Figure 11-7: Content flows on different sides of the exclusion element as various values are
applied to wrap-flow.

Exclusions and Grids

For me, one of the most exciting things about CSS Exclusions is the way
they interact with the Grid Layout module that I introduced in Chapter 4.
Any grid item can be made into an exclusion element, which really expands
grid layout possibilities. As a simple example, consider a grid with three col-
umns and two rows:

E {
 display: grid;
 grid-columns: 1fr 1fr 1fr;
 grid-rows: 100px 1fr;
}

On that grid, I’ll place two items that have overlapping cells (they’ll
overlap in row two, column two):

F, G { grid-column-span: 2; }
F {
 grid-column: 2;
 grid-row-span: 2;
}
G { grid-row: 2; }

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 205

Under the usual rules of grid placement, element G would stack over
the top of element F, as it appears later in the DOM order. But by making
element G the exclusion element, the inline content of element F will flow
around it:

G {
 grid-row: 2;
 wrap-flow: both;
}

As you can see in the example file grid-exclusion.html (and in Figure 11-8),
F now takes on a kind of inverted upside-down L shape as it flows around
element G. This kind of layout is quite common in print so being able to
reproduce it in web pages is really quite exciting. By making possible the kind
of art direction that books and magazines have taken for granted for hun-
dreds of years, CSS Exclusions ushers in a whole new era of laying out pages
on the Web.

Figure 11-8: CSS Exclusions work nicely with CSS grids to create layout patterns that have
previously not been possible.

Shaped Exclusions

The CSS Exclusions used in the examples in this section so far are based on
standard block elements, so they appear boxy. The plan in the future is that
you won’t be limited to rectangular exclusions because a pair of new prop-
erties will allow you to draw geometrical exclusion shapes.

The shape-inside and shape-outside properties will accept as a value either
a simple geometric shape such as a circle or ellipse, or a series of coordinates
that will create a completely customized polygonal shape. Content could then
be flowed around either the inside or outside of this shape (or both), open-
ing up possibilities for the types of rich layout long possible in print but now
improved with the dynamism of web content.

Even Further Future Layouts
As I write this in early 2013, a series of new rules and properties that affect
layout are at various degrees of implementation—from barely there to only
a proposal. My hope is that they will all be adopted and implemented because

www.it-ebooks.info

http://www.it-ebooks.info/

206 Chapter 11

they solve different problems. With the CSS specification in a constant state
of flux, however, nothing can be taken for granted; these rules and proper-
ties may be implemented, partially implemented with a different syntax, or
not implemented at all.

Still, I think looking at them is worthwhile for two reasons: First, so
you can see the thinking that goes on in trying to find solutions to the
 problems of web layout; and second, if they are implemented, you may
need to use them.

Box Alignment

The idea behind the Box Alignment module is to create a syntax that’s
common across many different modules, for aligning elements within their
parent. Box Alignment takes the Flexbox syntax as its inspiration, using
justify- properties for inline/main axis alignment and align- properties for
stacking/cross-axis alignment. For example, to align an element along its
main axis, you’d use the justify-self property; and to align the child ele-
ments of an element along the cross axis, you’d use align-content.

Line Grid

In addition to the well-known grid formed with rows and columns, typog-
raphers also use what’s often known as a line grid, or a vertical rhythm, a sec-
ondary grid created from the lines of text and headings on a page. When
using a line grid, you try to make the vertical dimensions and alignment of
objects harmonious with the text for better readability.

The Line Grid module creates a virtual vertical grid based on the
font-size and line-height of text elements and lets you better align objects
within that grid. It allows you to snap block elements to fixed points in that
grid, overriding the default layout position created by the browser’s engine.

Paged Media

Scrolling is the de facto way to work with content that overflows its container,
especially the screen, but scrolling isn’t always easy with devices such as tele-
vision remote controls and liquid paper ebook readers, for example. A bet-
ter approach for these devices might be to use paginated overflow instead.

You can do this easily with features proposed in the Paged Media module,
which introduces the overflow-style property. A value of paged-x or paged-y
automatically creates pages horizontally or vertically (respectively), while
-controls (such as paged-x-controls) adds on-screen controls generated by
the browser for interfaces that require them.

A further proposal, Pagination Templates, extends this even further,
creating content regions that are fixed to each page for a consistent experi-
ence, allowing rich interactive magazine-style layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 207

Feature Queries
In Chapter 5 I discussed the JavaScript library Modernizr, which is used for
detecting the existence of certain features in a visitor’s browser, and briefly
mentioned its native adaptation into CSS through the @supports at-rule.
I want to return to that now and explore it in a little more detail, as it’s
extremely useful and fast making its way into browsers.

The @supports at-rule behaves like a media query: You create a logical
query that, if it returns true, will apply the rules contained within the sub-
sequent brackets. But instead of media features, the test conditions are CSS
property-value pairs, known as feature queries. For example, to test whether a
user’s browser supports the column-count property so you can serve appropri-
ate styles, you could construct a query like this:

@supports (column-count: 1) { ... }

As with media queries, you can build more advanced queries using
logical operators. For example, the following query uses the and operator
to serve styles to browsers that support both the column-count and box-sizing
properties:

@supports (column-count: 1) and (box-sizing: border-box) { ... }

You can also use the or operator to build queries that detect defined
features, which is extremely useful when dealing with vendor-prefixed
 properties. Here, both the hyphens or -moz-hyphens properties are tested
against, and if either is supported, the rules are applied:

@supports (-moz-hyphens: auto) or (hyphens: auto) { ... }

The not operator allows you to serve styles to browsers that don’t sup-
port a given property. (Note that unlike the other operators, this one must
be inside parentheses.)

@supports (not (-webkit-hyphens: auto)) { ... }

Feature queries include an API that is as simple to use as the at-rule.
For example, you can use the CSS.supports() method to detect a single fea-
ture by passing a property-value pair as two arguments. Here, it tests for
the flex value on the display property:

var supports = CSS.supports('display','flex');

And you can pass in full queries as a single argument, quoted as a string:

var supports = CSS.supports('(column-count: 1) and (display: flex)');

www.it-ebooks.info

http://www.it-ebooks.info/

208 Chapter 11

The Modernizr project has already begun implementing this in its
library; if native CSS.supports() implementation is present, the script will
use that, and if not, it will fall back to Modernizr’s own tests.

Cascading Variables
Variables have proven their utility over the years in just about every program-
ming language, but they have never been implemented in CSS, despite
regular calls for implementation from the community. But with the surge
in popularity of CSS preprocessors, a generation of coders is learning to
love variables in their stylesheets, and calls to include them natively in the
language can no longer be ignored.

As currently proposed, CSS variables have limited scope. A true variable
permits any type of value and could be used at any point in the code—say, to
assign a selector to a variable. The proposed CSS variables can be assigned
only a valid CSS value and can be used only as the value of a property. For
this reason, they’re distinguished with the name Cascading Variables.

Each Cascading Variable is declared using a custom property: a user-
defined property name beginning with var- to which a value is assigned.
Here, the color value #F00 is assigned to the custom property var-foo:

:root { var-foo: #F00; }

Notice that I’ve declared this custom property using the :root selector.
(I explain why shortly.)

To use the value of the custom property, you call it using the var() func-
tion, with the user-defined name (the bit after var-) in parentheses. The
value of the custom property is used as the value of the property it’s called
on. For example, in the following listing, the h1 element calls the var-foo
property using the var(foo) function twice: once on the border-bottom prop-
erty and once on color. The color value #F00 will be applied appropriately
to each property.

h1 {
 border-bottom: 1px solid var(foo);
 color: var(foo);
}

Cascading Variables are scoped, meaning they apply only to the element
on which they are declared and to any child element. My use of the :root
selector to declare a custom property in the example in this section means
the variable has global scope : It can be applied on any element on the page.
Had I used a different selector, the value of the variable declared in the
 custom property would apply only to children of the matching element(s).

www.it-ebooks.info

http://www.it-ebooks.info/

The Future 209

For example, in the following code the custom property var-foo, with
a value of #F00, is declared on the :root element, but I’ll also add a differ-
ent value and selector below it. In this case, the value of the variable would
be #F00 for the whole document, but it will now be #00F for the .bar ele-
ment and its children.

:root { var-foo: #F00; }
.bar { var-foo: #00F; }

n o T e In the longer term, the preprocessor favorite mixins will also be implemented in CSS.
A mixin is like an extended variable, allowing blocks of code to be reused across mul-
tiple selectors. There’s even been talk of implementing full variables, allowing replace-
ment of property names and selectors.

summary
In this chapter, we’ve looked at some of the more experimental features of
the web platform. These are all still in the testing phase and are liable to
change, but they’re so powerful and potentially important to the platform’s
future that I couldn’t really finish this book without mentioning them.

First up was Web Components, the biggest change to HTML since its
invention. Web Components is a suite of features. It makes a parallel DOM
that allows reusable code blocks to enhance and extend the standard HTML
elements with full encapsulation, protecting them from conflicts with other
CSS rules and JavaScript functions.

Next we looked at the future of CSS, which is also undergoing huge
changes thanks to the involvement of big tech companies. CSS Regions and
Exclusions promise to provide the tools required to create dynamic custom
layouts that rival (and exceed?) anything possible in print media.

Finally, I covered new CSS features that are being developed based
on innovation from the web development community. These include fea-
ture queries that bring native Modernizr-like feature detection to CSS and
Cascading Variables that begin the adoption of the best preprocessor fea-
tures into the language itself.

further reading
Web Components are quite new as of this writing, so not many resources
are around. The developer-friendly introduction written by the spec authors
should be your first stop. Next might be Eric Bidelman’s presentation. Both
resources are helpful in learning the core concepts. You can find them at
http://dvcs.w3.org/hg/webcomponents/raw-file/tip/explainer/index.html and http://
html5-demos.appspot.com/static/webcomponents/index.html (you may need to use
Google Chrome to view this correctly).

www.it-ebooks.info

http://www.it-ebooks.info/

210 Chapter 11

The Shadow DOM is the best-implemented piece of Web Compo-
nents and, as such, has more online documentation. Both Sitepoint and
HTML5 Rocks have clearly written explanations of the topic, which you’ll
find at http://www.sitepoint.com/the-basics-of-the-shadow-dom/ and http://www
.html5rocks.com/en/tutorials/webcomponents/shadowdom/.

If your browser doesn’t support custom elements, consider X-Tags,
an experimental library created by Mozilla that replicates the behavior
of custom elements and has an extensive registry of prebuilt components:
http://x-tags.org/.

Internet Explorer 10 was the first browser to implement CSS Regions,
so their documentation is useful for covering the basics. See http://msdn
.microsoft.com/en-us/library/ie/hh673537%28v=vs.85%29.aspx/.

CSS Exclusions are also in IE10, so their documentation should be
the first point of call again. Once you’ve finished there, check out some
of the demos from Adobe. See http://msdn.microsoft.com/en-us/library/ie/
hh673558%28v=vs.85%29.aspx/ and http://adobe.github.com/web-platform/
samples/css-exclusions/.

MDN has the best documentation of feature queries, although the
API is currently undocumented. See https://developer.mozilla.org/en-US/docs/
CSS/@supports/.

As I write this, the only place to learn about Cascading Variables is in
the draft specification at http://dev.w3.org/csswg/css-variables/.

If the Box Alignment proposal is still ongoing as you read this, you can
follow its progress at http://dev.w3.org/csswg/css3-align/ and find the Line
Grid proposed spec at http://dev.w3.org/csswg/css-line-grid/.

Håkon Wium Lie and Chris Mills wrote a very nice introduction to
CSS pagination in their article “Opera Reader: Paging the Web”: http://
people.opera.com/howcome/2011/reader/index.html. For more on Pagination
Templates, see the Adobe Web Platform blog at http://blogs.adobe.com/
webplatform/2012/05/31/pagination-templates-in-css/.

www.it-ebooks.info

http://www.it-ebooks.info/

A
b r o W S e r S u P P o r T a S o f

M a r C h 2 0 1 3

Documenting feature implementation in
browsers means aiming at a moving target,

so the best I can do is take a snapshot. When
considering whether to use one of the features in this
book, always check the following sites for the most up-
to-date information:

•	 HTML5 Please, http://html5please.com/

•	 The CSS3 Test, http://css3test.com/

•	 The HTML5 Test, http://html5test.com/

•	 Can I Use..., http://caniuse.com/

When I started this book midway through 2012, I took a gamble on
which features I thought would be best to cover, including not only those
that had already been well implemented but also some that I thought stood
a good chance of being implemented when the book went to print (or soon
after). As I write this in early 2013, it seems that the pace of wider adoption

www.it-ebooks.info

http://www.it-ebooks.info/

212 Appendix A

has been slower than I anticipated for some of the features contained in
Internet Explorer 10 (such as Grid Layout, Regions, and Exclusions), but
everything else is proceeding apace.

The browsers in Question
Far too many browsers exist for me to provide a decent overview of feature
support on each. Instead, in this appendix, I’ll stick to the key modern
desktop browsers—Chrome, Firefox, Internet Explorer 10, and Safari—
and their mobile equivalents, as I’ve done throughout this book.

As this book was going to press, Opera announced that it would be
phasing out its own Presto rendering engine and that future versions of the
browser would instead use Chromium, the branch of WebKit that Chrome
is also based on. But that doesn’t mean Presto will be going away in the short
term—it’s already embedded on many devices that don’t tend to update,
such as TVs and games consoles. In the long term, feature support should
be considered the same as Chrome, but I’ve kept it distinct here for legacy
support.

When discussing mobile browsers, I usually mean both smartphone and
tablet and, more often than not, that means Safari mobile and the Android
browser (although both are based on WebKit, there’s quite a deal of variety
between them). Firefox, Internet Explorer, and Opera use the same render-
ing engine across different platforms (although see the previous paragraph
about Opera), so I’ll only mention the mobile version of those browsers
where any differences exist (which is not often).

When I refer to Android, I mean the stock browser that comes with
most versions of the Android OS up to 4.2 (the most recent as I write this).
Newer releases will likely include the new mobile version of Chrome, which,
like Firefox and Opera, can be considered more or less equivalent to its
desktop sibling.

As I’ve mentioned before, there really is no substitute for testing on
actual devices. If possible, you should create a device library or join one in
your area; if that’s completely out of the question, ask other developers for
their experiences.

enabling experimental features
Many browsers, especially Chrome and Firefox, are being much more cau-
tious than they used to be with regard to implementing experimental fea-
tures. Where previously they would implement features with a vendor prefix
and roll them out to all users, now they usually require that you explicitly
enable certain features with a configuration flag.

In Firefox, you do this by entering about:config in the URL bar, at
which point you’ll see a message that warns you of the consequences of
 dabbling in the browser’s inner workings. If this doesn’t deter you, you
can find the feature you want and enable it before restarting your browser
in order to gain access to the now-enabled feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Browser Support as of March 2013 213

In Chrome, the process is much the same except that you enter
chrome://flags, no warning message appears, and the features are usually
enabled by toggling a link marked Enable.

chapter 1: The Web Platform
Every major modern desktop browser comes with a set of developer tools
that includes a console (only Internet Explorer 7 and below don’t have one).
The situation on mobile devices and tablets is a bit more complicated: Most
browsers don’t have developer tools by default, but they can be connected
to their desktop equivalents for debugging, as explained in “Test and Test
and Test Some More” on page 19.

chapter 2: structure and semantics
The newer HTML5 structuring elements appear in Internet Explorer 9 and
above and in all other major modern browsers. Discussion around some of
these elements is still ongoing as I write this. Some browsers are beginning
to support a main element despite opposition from spec editor Ian Hickson,
whereas other elements such as hgroup are at risk of being dropped.

Using the attribute-based accessibility and semantic extensions WAI-ARIA,
microformats, RDFa, and microdata in any browser is completely safe. The
microdata API is implemented in Firefox and Opera.

Data attributes are also supported in all browsers, although the API
using dataset is not present in Internet Explorer or Android 2.3 and below.
The jQuery method works cross browser.

chapter 3: device-responsive css
As I write this, media queries are available in Internet Explorer 9 and
above and in all other major modern browsers. The media features related
to device dimensions are the most widely implemented. The resolution
media feature is in Internet Explorer 10, Firefox, and Opera and was
implemented in the WebKit core at the end of 2012, so it’s making its way
into WebKit-based browsers.

The dppx unit should be in all modern browsers bar Internet Explorer
by the time you read this, and devicePixelRatio is in WebKit browsers, Opera,
and Firefox (including mobile versions).

The @viewport at-rule is in Opera, Internet Explorer 10, and WebKit, using
the vendor prefix of each. The matchMedia API is in Internet Explorer 10 and
all other modern browsers but not in Android 2.3 and below.

The CSS property box-sizing is in all browsers, although it requires a ven-
dor prefix in Firefox and versions 3.0 and below of Android. Only Firefox sup-
ports the padding-box value. The calc() value function is in IE9 and above,
Firefox, desktop WebKit browsers, and from version 6.0 of mobile Safari. It’s
not in Android or Opera and requires the -webkit- prefix in other mobile
WebKit browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

214 Appendix A

The viewport-relative length units—vh, vw, etc.—are in IE9 (with a few
bugs) and IE10, Firefox, and most WebKit browsers except Android, but
not present in Opera. The rem unit is in IE9 and above and all other major
browsers.

The object-fit and object-position properties are implemented in Opera
only and marked as “at risk” in the spec, so face an uncertain future, espe-
cially now that Opera is moving to use WebKit.

chapter 4: new Approaches to css layouts
The multi-column layout properties are implemented in IE10 and all other
modern browsers. The use of vendor prefixes is required in WebKit-based
browsers and Firefox, and Firefox also lacks support for the column-span
property. Only Opera and IE10 support the break-before and break-after
properties.

Flexbox is supported in all major browsers and requires a vendor prefix
in WebKit-based user agents. IOS6.1 and below use a hybrid of the current
syntax and an older one: The justify-content property isn’t implemented,
and it instead has the old box-pack property. I hope this will no longer be
the case when you read this appendix.

IE10 also uses an outdated syntax, fully vendor prefixed. I recom-
mend you read the documentation in the “Internet Explorer 10 Guide for
Developers” for detailed information: http://msdn.microsoft.com/library/ie/
hh673531%28v=vs.85%29.aspx/.

Firefox supports only single-line Flexbox, so the flex-wrap property and
flex-flow shorthand property are ignored.

As explained in Chapter 4, IE10 is the only browser to support Grid
Layout, using an older version of the syntax with the -ms- prefix. Work is
underway on implementing this in WebKit, which should use the spec-
compliant syntax. The grid-template property is not currently implemented
in any browser.

chapter 5: Modern Javascript
The async attribute is in IE10 and most other browsers other than Android
versions 2.3 and below and Opera. The defer attribute is the same but also
has support at least back to IE8.

The addEventListener() method is in IE9 and above and all other major
browsers, as is the DOMContentLoaded event.

Despite the uncertainty around existing patents, touch events are in
Chrome, Firefox, Safari for iOS, and Android. IE10 has support for pointer
events, such as MSPointerDown, which are vendor prefixed.

The querySelector() and querySelectorAll() methods are fully implemented
in all modern browsers, from IE8 and higher. The getElementsByClassName()
method is almost as well implemented, lacking support only in IE8. The
classList object is in IE10 and above, and most other browsers except for
Android version 2.3 and below.

www.it-ebooks.info

http://www.it-ebooks.info/

Browser Support as of March 2013 215

chapter 6: device APIs
The Geolocation API is in IE9 and all other major browsers. Device orien-
tation is present in mobile WebKit browsers, Chrome, and Firefox mobile.
Do bear in mind, however, that device APIs depend on certain functions
being available on the phone; just because the Device Orientation API is
implemented in a browser, it doesn’t necessarily follow that the device has
an accelerometer.

Opera has implemented the Full Screen API, as have desktop WebKit
browsers, Chrome for Android, and Firefox. The WebKit and Firefox imple-
mentations have some subtle differences, but rather than trying to explain
those here, I’ll refer you to the MDN article “Using Fullscreen Mode” at
https://developer.mozilla.org/docs/DOM/Using_fullscreen_mode/. Firefox and
WebKit browsers support the :-moz-full-screen and :-webkit-full-screen
pseudo-classes, respectively.

The Vibration, Battery Status, and Network Information APIs are avail-
able in Firefox mobile only. Despite support for each apparently landing in
WebKit throughout 2012, I can’t find any working implementations.

The getUserMedia() method is implemented in Opera, and in Firefox
and Chrome with vendor prefixes (mozGetUserMedia, webkitGetUserMedia).
Firefox currently requires that you opt in to use getUserMedia() with the
media.navigator.enabled flag because of its experimental nature.

Web Storage is in IE8 and above and all other major browsers.
The Drag and Drop API is partially supported in IE8 and IE9, and fully

implemented in IE10 and other major desktop browsers. Owing to its nature,
it isn’t supported in mobile browsers.

The File API is fully implemented in Firefox, Chrome, Safari (iOS and
desktop), and Opera, and partially supported in IE10 and Android. The
FileReader API is fully implemented in IE10 and all other desktop browsers,
plus WebKit mobile browsers including Android from version 3.0.

chapter 7: Images and graphics
Some form of SVG support is present in IE9 and above, Android 3.0 and
above, and all other major browsers. SVG filters are slightly more limited,
being unavailable in IE9 and Android, although using SVG filters on HTML
elements works reliably only in Firefox. The new CSS filter() function is cur-
rently implemented in nightly Chrome builds, but it is disabled by default.
The use of fragment identifiers in SVG is possible only in IE10 and Firefox.

Support for the canvas element is in IE9 and above and all other major
browsers. Firefox, Chrome, Safari (desktop), and Opera all have implemen-
tations of WebGL, although it’s disabled by default in some browsers, nota-
bly Safari and Chrome for Android.

chapter 8: new forms
Levels of support for the various form elements, especially those with on-
screen controls, vary wildly among browsers and are changing all the time.

www.it-ebooks.info

http://www.it-ebooks.info/

216 Appendix A

Rather than try to capture that here, I’ll refer you to the HTML5 Test, which
has the most comprehensive and up-to-date coverage. Using the new input
types is generally considered safe, as the browser will fall back to the text
type if a different value is not recognized.

The Constraint Validation API is present in IE10 and all other major
browsers. Safari supports the API but has no on-screen error notifications.

chapter 9: Multimedia
The video and audio elements, along with their related APIs, are in IE9 and
above and all other major browsers, although with the caveat about sup-
ported file types discussed in Chapter 9. The track element is supported
in the desktop versions of IE10, Safari 6 and above, Chrome, and Opera;
Chrome for Android is the only mobile browser to offer support. Media
Fragments are implemented in Firefox and WebKit browsers.

The Web Audio API is experimentally implemented in Chrome and
Safari (iOS and desktop) using the webkitAudioContext() constructor. Of
WebRTC, only the getUserMedia() method is currently supported, which was
mentioned in Chapter 6.

chapter 10: Web Apps
Support for AppCache is present in IE10 and all other major browsers.

chapter 11: The future
Chrome is the only browser to have any support for the new Web Components
features; it has implemented the Shadow DOM (with the vendor-prefixed
webkitShadowRoot() constructor) and templates. Both must be explicitly
enabled. Work on custom elements is underway.

As far as I know, no other browser vendors have committed to imple-
menting Web Components yet, although I understand that Firefox will in
the future. Firefox already has support for scoped styles, as does Chrome.

CSS Regions are implemented in IE10 and Chrome, although, once
again, the latter currently requires that you enable it using a flag. Both
require vendor prefixes on the properties, and IE10 allows only content
inside an iframe as the source.

Exclusions are available exclusively in IE10, using the -ms- prefix.
The feature queries @supports at-rule is available in Firefox and Opera,

and Firefox also recognizes the CSS.supports() method. Work is underway to
bring them to WebKit browsers and may already be in place as you read this.

Cascading Variables are implemented in Chrome only and must be
explicitly enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

B
f u r T h e r r e a d i n g

This appendix is simply a collection of
all of the links contained in the “Further

Reading” section of each chapter, brought
together in one place for your convenience.

My plan is to host this list on the companion website,
http://modernwebbook.com/, and update it with new and
interesting links as I find them (and perhaps prune
out-of-date ones).

Introduction
Statistics used in this chapter were taken from many sources, nota-
bly Vision Mobile’s “The Mobile Industry in Numbers” at http://www
.visionmobile.com/blog/2012/10/infographic-the-mobile-industry-in-numbers/
and Cisco’s “The Internet of Things” at http://blogs.cisco.com/news/
the-internet-of-things-infographic/.

www.it-ebooks.info

http://www.it-ebooks.info/

218 Appendix B

You can find a good primer on the IoT in The Next Web’s article
“Why 2013 Will Be the Year of the Internet of Things”: http://thenextweb
.com/insider/2012/12/09/the-future-of-the-internet-of-things/.

David Storey wrote a great post about the non-smartphone mobile web,
“See your site like the rest of the world does. On the Nokia X2-01,” at http://
generatedcontent.org/post/31441135779/mobileweb-row/.

The best article I’ve read on designing for mobile devices, and from
which I quote in this chapter, is Jonathan Stark’s “The 10 Principles
of Mobile Interface Design”: http://www.netmagazine.com/features/
10-principles-mobile-interface-design/. Jason Grigsby’s excellent article
“Responsive Design for Apps” is a good primer for designing for mul-
tiple screen dimensions and capabilities: http://blog.cloudfour.com/
responsive-design-for-apps-part-1/.

UX Magazine’s article by Brennen Brown, “Five Lessons from a Year of
Tablet UX Research,” has some great findings on how people use tablets:
http://uxmag.com/articles/five-lessons-from-a-year-of-tablet-ux-research/.

A good starting point for Anna Debenham’s research on games con-
sole browsers is an A List Apart article “Testing Websites in Game Console
Browsers”: http://www.alistapart.com/articles/testing-websites-in-game-con
sole-browsers/.

Jason Grigsby (again) gave an excellent talk, “The Immobile Web,”
on developing for TV. The video is at http://vimeo.com/44444464/, and the
accompanying slides are at http://www.slideshare.net/grigs/the-immobile-web/.

For the full research on multi-device usage, see Google’s blog post
“Navigating the New Multi-screen World” at http://googlemobileads.blogspot
.co.uk/2012/08/navigating-new-multi-screen-world.html.

Making your websites Future Friendly is always good: See http://
futurefriend.ly/.

chapter 1: The Web Platform
In case you missed it, the list of technologies that make the web platform
is at http://platform.html5.org/. Bruce Lawson proposed NEWT on his blog:
http://www.brucelawson.co.uk/2010/meet-newt-new-exciting-web-technologies/.

The W3C’s HTML5 spec is at http://www.w3.org/TR/html5/, and the
WHATWG’s living spec is at http://whatwg.org/html. More usefully, they also
have an Edition for Web Developers, which leaves out some of the more arcane
language and is, therefore, more readable: http://developers.whatwg.org/.

The complete HTML5 Boilerplate is at http://html5boilerplate.com/.
Remem ber, just use the bits you need; don’t copy the whole thing verbatim.

For finding out about feature implementation levels, I recommend
Alexis Deveria’s site Can I Use... at http://caniuse.com/, the community site
HTML5 Please at http://html5please.com/, and The HTML5 Test at http://
html5test.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

Further Reading 219

The LabUp! website is a resource for finding or getting involved with
open device testing labs: http://lab-up.org/. The chief tester at the BBC,
David Blooman, wrote a long and detailed article, “Testing for Dummies,”
about how a global organization performs multi-device testing: http://
mobiletestingfordummies.tumblr.com/post/20056227958/testing.

Patrick Meenan’s slides for his talk “Taming the Mobile Beast” contain
a wealth of links and information on testing mobile devices: http://www
.slideshare.net/patrickmeenan/velocity-2012-taming-the-mobile-beast/, and Anna
Debenham’s article for A List Apart, “Testing Websites in Game Console
Browsers,” is about . . . well, the title’s quite self-explanatory: http://www
.alistapart.com/articles/testing-websites-in-game-console-browsers/.

Opera has written detailed instructions about remote debugging at
http://www.opera.com/dragonfly/documentation/remote/. weinre is available
to download from http://people.apache.org/~pmuellr/weinre/docs/latest/. You
can get more information on Adobe Edge Inspect at http://html.adobe.com/
edge/inspect/.

chapter 2: structure and semantics
HTML5 Doctor is the best source information for most HTML5 topics,
including the clearest definition of the new outline algorithm I’ve read
so far, in this article by Mike Robinson: http://html5doctor.com/outlines/.
You can download the element flowchart shown in Figure 2-1 from http://
html5doctor.com/resources/#flowchart/. See also Derek Johnson’s article
in Smashing Magazine : http://coding.smashingmagazine.com/2011/08/16/
html5-and-the-document-outlining-algorithm/.

For much more detail on the HTML5 structural elements problem, I
strongly suggest you read Luke Stevens’s book The Truth About HTML5; find
it at http://www.truthabouthtml5.com/. If you want to read the full HTML5
specification and make up your own mind, I advise going for the developer’s
version at http://developers.whatwg.org/sections.html.

Read the full WAI-ARIA specification at http://www.w3.org/TR/wai-aria/.
The Paciello Group Blog is worth reading for information about accessibility
in HTML5, and this post on landmark roles is directly relevant: http://www
.paciellogroup.com/blog/2010/10/using-wai-aria-landmark-roles/.

Divya Manian’s article on semantics was published by Smashing Magazine
at http://coding.smashingmagazine.com/2011/11/11/our-pointless-pursuit-of-seman
tic-value/. For more on aboutness and the importance of semantics, I highly
recommend the book Ambient Findability: What We Find Changes Who We Become
by Peter Morville (O’Reilly, 2005). The website http://webdatacommons.org/
provides information and statistics about sites that use structured data.

Read all about microformats at http://microformats.org/. A revision of the
syntax, microformats 2.0, was started in 2010 and is still underway; learn
more about that at http://microformats.org/wiki/microformats-2.

www.it-ebooks.info

http://www.it-ebooks.info/

220 Appendix B

If you want to learn more about the RDFa format, the W3C published
an excellent primer: http://www.w3.org/TR/xhtml-rdfa-primer/.

The best resource for learning about microdata comes from the HTML5
Doctor again: http://html5doctor.com/microdata/. If you’re feeling masochistic
and prefer to read the spec in detail, you’ll find it at http://www.w3.org/TR/
microdata/.

You can get more information on Schema.org at—wait for it!—http://
schema.org/, and Google’s documentation of rich snippets is at http://support
.google.com/webmasters/bin/answer.py?hl=en&answer=99170. You’ll find the
testing tool at http://www.google.com/webmasters/tools/richsnippets/.

John Resig wrote a concise introduction to data attributes on his blog,
http://ejohn.org/blog/html-5-data-attributes/, and the data() method is fully
documented on the jQuery website at http://api.jquery.com/data/.

chapter 3: device-responsive css
First port of call for learning more about media queries should be Zoe
Mickley Gillenwater’s post “Essential Considerations for Crafting Quality
Media Queries”: http://zomigi.com/blog/essential-considerations-for-crafting-qual
ity-media-queries/.

The authority on mobile devices is PPK, and if you want to find
out more about physical and virtual pixels, I suggest you start with his
article “A Pixel Is Not a Pixel Is Not a Pixel”: http://www.quirksmode.org/
blog/archives/2010/04/a_pixel_is_not.html. Wikipedia has a list of com-
mon device resolutions and pixel density: http://en.wikipedia.org/wiki/
List_of_displays_by_pixel_density.

Patrick Lauke wrote an article about user-controlled DPR, “device-
PixelRatio in Opera Mobile”: http://my.opera.com/ODIN/blog/2012/07/05/
devicepixelratio-in-opera-mobile. Matt Wilcox’s article “The Responsive Design
Process” has a good glossary of key terms as well as plenty of practical
advice on the design side: http://mattwilcox.net/archive/entry/id/1078/.

Read more about the way that different browsers round decimal places
in John Albin Wilkins’s post “Responsive Design’s Dirty Little Secret”: http://
www.palantir.net/blog/responsive-design-s-dirty-little-secret/.

Paul Irish’s blog post “box-sizing: border-box FTW” sets out his
reasons for applying this property globally: http://paulirish.com/2012/
box-sizing-border-box-ftw/.

Luke Wroblewski’s book Mobile First is published by A Book Apart:
http://www.abookapart.com/products/mobile-first/.

To learn more about content breakpoints, read a pair of articles
from Australian web design studio Jordesign (http://www.jordesign
.com/blog/responsive-breakpoints-from-the-content-out/) and developer
Thierry Koblentz (http://coding.smashingmagazine.com/2012/03/22/
device-agnostic-approach-to-responsive-web-design/).

www.it-ebooks.info

http://www.it-ebooks.info/

Further Reading 221

The history of the current favorite responsive images proposal, and
latest news on the state of its adoption, can be found on the website of
the Responsive Images Community Group: http://www.w3.org/community/
respimg/.

Find Matt Wilcox’s Adaptive Images tool at http://adaptive-images.com/.

chapter 4: new Approaches to css layouts
The ever-dependable MozDev has a really clear introduction to multiple
columns, “Using CSS multi-column layouts,” at https://developer.mozilla.org/
en-US/docs/CSS/Using_CSS_multi-column_layouts/.

The Flexbox syntax has changed so often that almost every current
online resource is out-of-date! That said, I recommend Stephen Hay’s
article “Learn You a Flexbox for Great Good!” at http://www.the-haystack
.com/2012/01/04/learn-you-a-flexbox/, even though it refers to an outdated
syntax, as Stephen’s knowledge of CSS layouts is second to none.

The best explanation of the Grid Layout module, at least in
regard to the IE10 implementation, is contained in the “Internet
Explorer 10 Guide for Developers”: http://msdn.microsoft.com/en-us/
library/ie/hh673533%28v=vs.85%29.aspx/.

Read Mark Boulton’s open letter on the subject of grid
terminology at http://www.markboulton.co.uk/journal/comments/
open-letter-to-w3c-css-working-group-re-css-grids.

chapter 5: Modern Javascript
The illustration in Figure 5-1 is adapted from Peter Beverloo’s blog: http://
peter.sh/experiments/asynchronous-and-deferred-javascript-execution-explained/.

Christian Heilmann wrote an in-depth introduction to JavaScript
events for Smashing Magazine : http://coding.smashingmagazine.com/2012/
08/17/javascript-events-responding-user/. The PointerEvents library is hosted
on GitHub at https://github.com/toolkitchen/PointerEvents/.

The jQuery website, http://jquery.com/, has instructions for getting
started, while the excellent documentation is at http://docs.jquery.com/
Main_Page. Statistics about jQuery usage are from the blog post “ jQuery
Now Runs on Every Second Website” at http://w3techs.com/blog/entry/
jquery_now_runs_on_every_second_website/.

All mobile libraries are fully documented: jQuery Mobile at http://
jquerymobile.com/, Zepto.js at http://zeptojs.com/, and jQTouch at http://
jqtouch.com/.

YepNope.js is available from http://yepnopejs.com/, and you’ll find a
good introductory tutorial at http://net.tutsplus.com/tutorials/javascript-ajax/
easy-script-loading-with-yepnope-js/.

www.it-ebooks.info

http://www.it-ebooks.info/

222 Appendix B

Modernizr’s website, http://modernizr.com/, has full documentation
plus a configurable build system and also plays host to “The All-In-One
Entirely-Not-Alphabetical No-Bullshit Guide to HTML5 Fallbacks”
(their title, not mine) at https://github.com/Modernizr/Modernizr/wiki/
HTML5-Cross-browser-Polyfills/.

Christopher Coenraets wrote an excellent introductory tutorial to
Mustache, although bear in mind that the syntax has changed a little:
http://coenraets.org/blog/2011/12/tutorial-html-templates-with-mustache-js/. The
full documentation of Mustache.js is at https://github.com/janl/mustache.js/.

Many different experimenting and debugging tools are available, and
both http://jsbin.com/ and http://jsfiddle.net/ are excellent.

chapter 6: device APIs
Dive Into HTML5 has an in-depth explanation of the Geolocation API at
http://diveintohtml5.info/geolocation.html, whereas the MozDev article “Orienta-
tion and Motion Data Explained” gives a good overview of three-dimensional
orientation and movement: https://developer.mozilla.org/en-US/docs/DOM/
Orientation_and_motion_data_explained/.

The Fullscreen API is explained in the Sitepoint article “How to Use
the HTML5 Full-Screen API” by Craig Buckler, although the API changed
slightly as I was writing this, so some object names or properties may
have been updated. You can find the article at http://www.sitepoint.com/
html5-full-screen-api/.

The Battery Status API is well explained by David Walsh at http://
davidwalsh.name/battery-api/, and a discussion of the previous and
newly updated Network Information API is at http://nostrongbeliefs.com/
a-quick-look-network-information-api/.

HTML5 Rocks gives the best explanation of getUserMedia() in their
 article “Capturing Audio & Video in HTML5”: http://www.html5rocks.com/
en/tutorials/getusermedia/intro/. The full aims of the WebRTC project are
listed at http://www.webrtc.org/.

MozDev (again) gives a concise introduction to the Web Storage API:
https://developer.mozilla.org/en-US/docs/DOM/Storage/.

The most accessible guide to the Drag and Drop API that I found was
written by the HTML5 Doctors at http://html5doctor.com/native-drag-and-drop/,
while the five-part “Working with Files in Java Script” by Nicholas Zakas is an
excellent resource for the File API: http://www.nczonline.net/blog/2012/05/
08/working-with-files-in-javascript-part-1/.

The APIs that form the Firefox OS project are listed at https://wiki
.mozilla.org/WebAPI/, and the slides from the presentation “WebAPIs
and Apps” by Robert Nyman provide a great overview of the APIs: http://
www.slideshare.net/robnyman/web-apis-apps-mozilla-london/. “Are We Mobile
Yet?” gives an at-a-glance guide to levels of API implementation: http://
arewemobileyet.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

Further Reading 223

chapter 7: Images and graphics
You can find a great introduction to SVG at the SVG Basics website: http://
www.svgbasics.com/, and the W3C’s own SVG Primer is a useful way to dig
deeper: http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html. MDN has
a quite complete list of elements and attributes: https://developer.mozilla.org/
en-US/docs/SVG/.

The technique for stacking SVG icons was developed by Erik
Dahlström and is described on the blog of Simurai: http://simurai.com/
post/20251013889/svg-stacks/. Mozilla’s Robert O’Callahan warns of the
 possible changes to the stacking technique: http://robert.ocallahan.org/
2012/10/impending-doom-for-svg-stacks-sort-of.html. I detailed the svgView()
method on my blog, Broken Links: http://www.broken-links.com/2012/
08/14/better-svg-sprites-with-fragment-identifiers/.

The IE Testdrive site has a good hands-on tool for experimenting with
SVG Filter Effects: http://ie.microsoft.com/testdrive/graphics/hands-on-css3/
hands-on_svg-filter-effects.htm.

Dirk Schulze wrote a good, concise introduction to the features
planned for SVG2: http://dschulze.com/blog/articles/8/new-features-in-svg2/.

You can find a good range of canvas tutorials, from beginner to expert
level, at http://www.html5canvastutorials.com/, and an excellent cheat sheet
with all of the core properties and methods on Jacob Seidelin’s blog at
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html (last updated
in 2009 but still relevant).

HTML5 Rocks has a tutorial on making more advanced image manipu-
lation effects at http://www.html5rocks.com/en/tutorials/canvas/imagefilters/.

In his blog post “Building a Live Green Screen with getUserMedia() and
MediaStreams,” Tim Taubert explains the basics of live video image manip-
ulalation: http://timtaubert.de/blog/2012/10/building-a-live-green-screen-with-get
usermedia-and-mediastreams/.

The Learning WebGL blog has lessons for complete beginners on work-
ing in a three-dimensional context in canvas at http://learningwebgl.com/
lessons/, and WebGL.com has frequent roundups of demos, tutorials, and
developer meet-ups: http://www.webgl.com/.

chapter 8: new forms
The ever-helpful MDN provides a concise and complete guide to the
new input types at https://developer.mozilla.org/en-US/docs/HTML/Element/
Input/. PPK has detailed tables showing support on the desktop at http://
www.quirksmode.org/html5/inputs.html and for mobile devices at http://www
.quirksmode.org/html5/inputs_mobile.html.

Ryan Seddon wrote a polyfill for providing HTML5 form capabilities
to browsers that don’t support them natively: Find it at https://github.com/
ryanseddon/H5F/.

www.it-ebooks.info

http://www.it-ebooks.info/

224 Appendix B

Bruce Lawson’s discussion of autofocus accessibility, “The Accessibility
of HTML 5 Autofocus,” is on his blog at http://www.brucelawson.co.uk/2009/
the-accessibility-of-html-5-autofocus/.

HTML5 Rocks has a good overview of the Constraint Validation API at
http://www.html5rocks.com/en/tutorials/forms/constraintvalidation/.

A useful application for testing regular expressions is Rubular. Don’t
worry that it’s aimed at Ruby; it works just as well for JavaScript and HTML5
forms: http://rubular.com/.

And your humble author wrote an introduction to CSS3 pseudo-
classes for HTML5 forms at HTML5 Doctor: http://html5doctor.com/
css3-pseudo-classes-and-html5-forms/.

chapter 9: Multimedia
The full text of Steve Jobs’s “Thoughts on Flash” is at http://www.apple.com/
hotnews/thoughts-on-flash/.

Advice on audio and video accessibility around autoplaying is on
the WCAG Audio Control page at http://www.w3.org/TR/UNDERSTAND
ING-WCAG20/visual-audio-contrast-dis-audio.html.

MDN has tables showing the current state of media format implemen-
tation across different browsers at https://developer.mozilla.org/en-US/docs/
Media_formats_supported_by_the_audio_and_video_elements/, and Kroc Camen’s
technique and notes for cross-browser implementation, “Video for Every-
body!”, is at http://camendesign.co.uk/code/video_for_everybody/.

The best introduction to WebVTT and the track element is on Dev
.Opera, http://dev.opera.com/articles/view/an-introduction-to-webvtt-and-track/,
and a useful WebVTT validation tool is on Anne van Kesteren’s website,
http://quuz.org/webvtt/.

I mentioned three encoding tools in this chapter: The FFmpeg
 command-line tool is at http://ffmpeg.org/, Miro Video Converter at http://
www.mirovideoconverter.com/, and HandBrake at http://handbrake.fr/.

The W3C’s Media Fragments specification is at http://www.w3.org/TR/
media-frags/.

MDN has the best documentation of the Media API and Events that I’ve
found at https://developer.mozilla.org/en-US/docs/DOM/HTMLMediaElement/
and https://developer.mozilla.org/en-US/docs/DOM/Media_events/, respectively.

CreativeJS has a great introductory article on the Web Audio API at
http://creativejs.com/resources/web-audio-api-getting-started/.

You can expect to hear a lot more about WebRTC in the future,
but Sam Dutton wrote a good introduction at HTML5 Rocks: http://
www.html5rocks.com/en/tutorials/webrtc/basics/. Microsoft’s intro duction
to the CU-RTC-Web proposal is on the Interoperability blog at http://
blogs.msdn.com/b/interoperability/archive/2012/07/28/customizable-ubiquit
ous-real-time-communication-over-the-web-cu-rtc-web.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

Further Reading 225

chapter 10: Web Apps
The Chrome Web Store has in-depth documentation on preparing an app
for submission, including details about the manifest file, at https://developers
.google.com/chrome/web-store/docs/get_started_simple/.

Firefox Marketplace provides details about the manifest file at https://
developer.mozilla.org/docs/Apps/Manifest/, and it has a useful manifest validation
tool at https://marketplace.firefox.com/developers/validator/. Robert Nyman’s
talk “Web APIs and Apps” is a great primer for building apps for the Firefox
Marketplace: http://www.slideshare.net/robnyman/web-apis-apps-mozilla-london/.

The latest version of the W3C widgets specification is at http://w3.org/TR/
widgets/, and you’ll find a useful introduction on Peter-Paul Koch’s site—
even though it was written a few years ago, and some small details of the
spec have changed since then: http://quirksmode.org/blog/archives/2009/04/
introduction_to.html.

The PhoneGap project is at http://phonegap.com/, and the API doc-
umentation is at http://docs.phonegap.com/. You can read the PhoneGap
 article “Beliefs, Goals, and Philosophy” at http://phonegap.com/2012/05/
09/phonegap-beliefs-goals-and-philosophy/.

You can read more about the Titanium project at http://appcelerator.com/
platform/.

Each smart TV platform has its own developer forum, but a good example
for getting started is Samsung’s site at http://www.samsungdforum.com/.

The Opera TV Store is gaining some traction as a custom-made solu-
tion; learn more about it at http://business.opera.com/partners/tv/store/. The
Dev.Opera site has some great reference articles on designing and develop-
ing for TV at http://dev.opera.com/tv/.

The Webinos project, which aims to create a standard common device
API, is hosted at http://www.webinos.org/.

The Mozilla Developer Center has great AppCache documentation
at https://developer.mozilla.org/en-US/docs/HTML/Using_the_application
_cache/, and Mark Christian and Peter Lubbers created a handy page of
AppCache facts at http://appcachefacts.info/. For all of AppCache’s draw-
backs and tips and techniques for using it, read Jake Archibald’s “Appli-
cation Cache is a Douchebag” at A List Apart: http://www.alistapart.com/
articles/application-cache-is-a-douchebag/.

chapter 11: The future
Web Components are quite new as of this writing, so not many resources
are around. The developer-friendly introduction written by the spec authors
should be your first stop. Next might be Eric Bidelman’s presentation. Both
resources are helpful in learning the core concepts. You can find them at
http://dvcs.w3.org/hg/webcomponents/raw-file/tip/explainer/index.html and http://
html5-demos.appspot.com/static/webcomponents/index.html (you may need to use
Google Chrome to view this correctly).

www.it-ebooks.info

http://www.it-ebooks.info/

226 Appendix B

The Shadow DOM is the best-implemented piece of Web Compo-
nents and, as such, has more online documentation. Both Sitepoint and
HTML5 Rocks have clearly written explanations of the topic, which you’ll
find at http://www.sitepoint.com/the-basics-of-the-shadow-dom/ and http://www
.html5rocks.com/en/tutorials/webcomponents/shadowdom/.

If your browser doesn’t support custom elements, consider X-Tags,
an experimental library created by Mozilla that replicates the behavior
of custom elements and has an extensive registry of prebuilt components:
http://x-tags.org/.

Internet Explorer 10 was the first browser to implement CSS Regions,
so their documentation is useful for covering the basics. See http://msdn
.microsoft.com/en-us/library/ie/hh673537%28v=vs.85%29.aspx/.

CSS Exclusions are also in IE10, so their documentation should be
the first point of call again. Once you’ve finished there, check out some
of the demos from Adobe. See http://msdn.microsoft.com/en-us/library/ie/
hh673558%28v=vs.85%29.aspx/ and http://adobe.github.com/web-platform/
samples/css-exclusions/.

MDN has the best documentation of feature queries, although the
API is currently undocumented. See https://developer.mozilla.org/en-US/docs/
CSS/@supports/.

As I write this, the only place to learn about Cascading Variables is in
the draft specification at http://dev.w3.org/csswg/css-variables/.

If the Box Alignment proposal is still ongoing as you read this, you can
follow its progress at http://dev.w3.org/csswg/css3-align/ and find the Line
Grid proposed spec at http://dev.w3.org/csswg/css-line-grid/.

Håkon Wium Lie and Chris Mills wrote a very nice introduction to
CSS pagination in their article “Opera Reader: Paging the Web”: http://
people.opera.com/howcome/2011/reader/index.html. For more on Pagination
Templates, see the Adobe Web Platform blog at http://blogs.adobe.com/
webplatform/2012/05/31/pagination-templates-in-css/.

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols and Numerals
@import at-rule, 40
@supports at-rule, 102, 207
@viewport at-rule, for setting viewport

parameter, 49–50
. (dot) notation, for storing items, 117
[] (square bracket) notation, for

storing items, 117
3-D axes, 110
3-D context

detecting device position in, 110
WebGL for, 138

3-D orientation, information sources,
124, 222

A
a element, dragging, 119
aboutness, 28
activeElement() attribute, 131
Adaptive Images tool, 63, 64, 221
adaptive websites, 39

vs. responsive, 53–56
add() method, 97
addEventListener method, 91–94
Adobe, 1, 182, 210, 226

Edge Inspect, 19
open standards, 200

agents, detecting dimension, 41
align-content property, 77
align-items property, 74
alignment

in Flexbox, 73
in grid layout, 83–84

align-self property, 75
all media type, for media queries, 44
all value, for column-span property, 68
almost standards mode, 15
alpha property, for orientation, 111
alt attribute, for picture element, 62
Amazon Kindle, 6
Ambient Findability (Morville), 38, 219

and operator
for feature queries, 207
for media queries, 44

Android, 19
browsers, 212

anonymous functions
vs. named functions, 92
removing from event handlers, 94

Apache Cordova, 182
APIs. See device APIs; specific APIs
app object, in manifest file, 180
AppCache (Application Cache), 178,

185–188
caching sequence, 186–187
documentation, 189, 225

.appcache file, 185, 186
Appcelerator Titanium, 184
appendChild() method, 193
Apple, and MP4 format, 166
Application Cache. See AppCache

(Application Cache)
application role, 27
applications. See TV apps; web apps
arc() method, 136
Archibald, Jake, 185
areas in grid, 78, 79
aria-haspopup attribute, 26
article element, 22–24

width of, 59
aside element, 22
aspect ratio

of device or viewport, 43
maintaining, 60

assistive technology
automatic focus and, 144
browser awareness of interactive

content, 26
asynchronous execution of scripts,

90–91
Atkins, Tab, 85
audio element, 116, 162–163

multiple source files for, 164

i n d e x

www.it-ebooks.info

http://www.it-ebooks.info/

228 Index

audio format, variation in browser
support, 166

audio() method, 173
AudioContext() method, 174
auto value

for column-fill property, 67
for height property, 60
for preload attribute, 163

autocomplete attribute for form, 145
autofocus attribute for form, 144
autoplay attribute, for media

elements, 163
avoid-column value, for break-before

property, 69
axes

in Flexbox, 73
in Orientation API, 110

B
B2B (business-to-business) sites, 2
balance value, for column-fill property, 67
bandwidth attribute, of connection

object, 115
banner role, 27
baseline value, for align-items

property, 74
Battery Status API, 114–115

information sources, 124, 222
battery, vibrating impact on, 113
beta property, for orientation, 111
Beverloo, Peter, 106, 221
Bidelman, Eric, 209, 225
bitmap images, 46

vs. vector graphics, 126
Blackberry, 19
blockquote element, 24
Blooman, Patrick, 20, 219
Blueprint.css file, 18
Boolean attributes, 16
Bootstrap framework, 18
border-box value, for box-sizing

property, 54
both keyword, for wrap-flow property, 203
bottom value, for object-position

property, 61
Boulton, Mark, 85, 87, 221
Box Alignment module, information

sources, 210, 226
box-sizing property, 54–55, 207
break-after property, 68–69
break-before property, 68–69

break-inside property, 68–69
breakpoints, 53

content, 57–59, 64, 220
breaks for columns, 68–70
broadband connections, 8
Brown, Brennen, 10, 218
browsers, 12

alert on size, 52
default behavior, 90
desktop, 3
developer tools in, 12
experimental features, enabling,

212–213
implementation of client-side

validation, 154
rendering modes, 14–15
support, 18–19, 211–216

“business card” syntax, 29
business-to-business (B2B) sites, 2

C
caching sequence, 186–187
calc() function, 55–56
Camen, Kroc, 167, 175, 224
camera, 116–117

accessing data stream from, 175
canvas

information sources, 140, 223
vs. SVG files, 138–139

canvas element, 125, 135–138
captions, for media files, 167–168
cascading variables, 200, 208–209,

210, 226
CDATA section in SVG file, 129
center value

for align-items property, 74
for grid alignment properties, 83
for justify-content property, 73
for object-position property, 61

chaining methods in jQuery, 99
change event handler, in Network

Information API, 116
charging attribute, of navigator.battery

object, 114
chargingchange event, in Battery Status

API, 115
chargingTime attribute, of navigator.battery

object, 114
chargingtimechange event, in Battery

Status API, 115
charset attribute, for meta tag, 15
checkValidity() method, 156

www.it-ebooks.info

http://www.it-ebooks.info/

Index 229

child elements, in grid, 78
Christian, Mark, 189, 225
Chrome (browser), 3

enabling experimental
features in, 213

Chrome for Android, Geolocation
opt-in prompt, 108

Chrome Web Store, 178
documentation from, 188, 225
manifest file for, 179–180

Chromium, 212
circle element in SVG, 127–128, 131
circles, arc() method for, 136
Cisco, 10, 217
classes in JavaScript, interaction with,

97–98
classList object, 97
clear keyword, for wrap-flow property,

203–204
clear() method, 118
clearWatch() method, 109
click event, information in

object from, 93
client-side validation

disabling, 155
of HTML form data, 154–156

cloneNode() method, 193
closing empty elements, 16
Coenraets, Christopher, 106, 222
color input, 150–151
color picker, 150–151
color query, for ebook reader, 51
column value

for break-before property, 69
for flex-direction property, 71

column-count property, 66–67, 207
column-fill property, 67
column-gap property, 67–68
column-reverse value, for flex-direction

property, 71–72
column-rule property, 68
column-span property, 68
columns property, 67
column-width property, 66–67
combining media queries, 44–45
comma separator, in media queries, 44
comments, in .appcache file, 186
complementary role, 27
condition, YepNope to test, 100
conditional elements, for HTML5

in IE, 25
config.xml manifest file, 181

connection object, attributes, 115
Constraint Validation API, 156–158

information sources, 160, 224
Contacts API, 123
contacts object, 183
contain keyword

for object fit, 60–61
for object-position property, 61

contains() method, 97, 120–121
content attribute, 49
content breakpoints, 57–59, 64, 220
content element, 199
content object, to access web

template, 193
contentinfo role, 27
context

for canvas element, 135
for content, 28
for device use, 7–9

controls attribute, for media
elements, 162

cookies, 117
coords child object, 108
cover keyword, for object fit, 60–61
create() function, for contacts object, 183
createObjectURL() method, 117
createShadowRoot() method, 198
CreativeJS, 176, 224
cross axis, in Flexbox, 73
CSS

future of, 200–209
Box Alignment module, 206
cascading variables, 208–209
Exclusions, 202–205, 210, 226
feature queries, 207–208
Line Grid module, 206
Paged Media module, 206
Pagination Templates, 206
Regions, 200–202

and HTML forms, 159
inheritance in, 195–196
preprocessors, 208
web component conflicts, 192

CSS box model, 54
CSS Exclusions, 202–205
CSS layouts, 65–87

browser support, 214
convergence with SVG, 134–135
Flexbox module, 70–78

adding flexibility, 75–76
alignment inside container,

73–75

www.it-ebooks.info

http://www.it-ebooks.info/

230 Index

CSS layouts, Flexbox (continued)
changing content order, 71–72
checking browser for

properties, 101
declaring model, 70–71
information sources, 87, 221
wrap and flow, 76–78

Grid Layout module, 18, 78–86
alignment and stacking, 83–84
Exclusions and, 204–205
grid declaration and definition,

79–80
grid template, 85–86
information sources, 87, 221
key terms, 78, 79
placing items on grid, 81–83
repeating grid lines, 81
September 2012 syntax update,

84–85
terminology, 78, 85

Multi-column Layout module,
66–70

gaps and rules, 67–68
information sources, 87, 221
items spanning multiple rows or

columns, 82
spans and breaks, 68–70

for styling SVG file, 131
CSS pixel, 45
CSS selectors, 96–97
CSS3, 16–18

@viewport at-rule for setting viewport
parameter, 49–50

frameworks and preprocessors, 18
vendor-specific prefixes, 17

CSS.supports() method, 207
CU-RTC-Web specification, 175
currentSrc property, for media file, 170
currentTarget property, of event object,

92, 96
currentTime property, for media file, 170
custom elements, 197–198, 210, 226

D
Dahlström, Erik, 139, 223
data attributes, 35–37

information sources, 38, 220
jQuery and, 36–37

Data Attributes API, 35–36
data() method, 36

data property, for image
manipulation, 137

data storage, user agents for, 117
datalists, for form input suggestions,

146–147
dataset property, 35
datatransfer object, 120, 121
datatypes, specifying for element, 120
date-picker widget, 149
dates, input types in forms, 148–150
datetime attribute, 31
datetime input, 149
datetime-local input, 149
Debenham, Anna, 10, 20, 218, 219
debugging

in JavaScript, 105
tools for, 106, 222

decorators, 194–196
vs. custom elements, 197

defaultValue property, for output
element, 154

defer attribute, 90–91
for script element, 90–91

defs element, 132
deleting item from storage, 118
density-independent pixel (DIP), 45
desktop browser, 3
developer certificate, and PhoneGap

setup, 182
developer tools in browser, 12
Deveria, Alexis, 20, 218
device adaptation, 48–50
device APIs, 107–124

Battery Status API, 114–115
browser support, 215
camera and microphone, 116–117
Contacts API, 123
Device Storage API, 123
Drag and Drop API, 119–121
Firefox OS and WebAPIs, 123
Fullscreen API, 111–113
Geolocation API, 108–109
information sources, 124, 222
interacting with files, 121–123
Network Information API, 115–116
Orientation API, 110–111
PhoneGap. See PhoneGap
Vibration API, 113–114
Web Storage API, 117–119
WebSMS API, 123
WebTelephony API, 123

www.it-ebooks.info

http://www.it-ebooks.info/

Index 231

device emulators, 19
device libraries, 212
device pixel ratio (DPR), 46, 48

media feature to target, 47
Device Storage API, 123
device-aspect-ratio feature, 43
device-height media feature, 43
deviceorientation event, on window object,

110–111
devicePixelRatio DOM property, for

window object, 46
deviceready event, in PhoneGap

project, 183
devices, 2–7

boundaries between, 58
desktop/laptop, 2–3
in-betweeners, 6–7
mobile, 3–4
tablets, 5

device-width media feature, 43
Dev.Opera, 176, 189, 224, 225
DIP (density-independent pixel), 45
:disabled pseudo-class, 159
dischargingTime attribute, of navigator

.battery object, 114
dischargingtimechange event, in Battery

Status API, 115
display property, for grid element, 79
div elements, 26

vs. semantic markup, 28
Dive Into HTML5, 124, 222
Doctype declaration, 14–15
Document Object Model (DOM),

selecting elements from, 96
DOMContentLoaded event, 94
domready event, 94
dot notation (.), for storing items, 117
DPPX (dots per pixel), 46
dppx unit, 47
DPR (device pixel ratio), 46, 48

media feature to target, 47
Drag and Drop API, 119–121

information sources, 124, 222
draggable attribute, 120
dragover event, 119
dragstart event, 120
drawImage() method, 137
drop event, 119
drop shadow properties, 136
drop zone, 119

list of files dropped in, 121

Dublin Core, 30
metadata terms, 127

duration property, for media
elements, 171

Dutton, Sam, 176, 224
dynamic calculations, on length values,

55–56

E
ebook readers, 6, 51
ECMAScript, testing for support, 51
Edge Inspect (Adobe), 19
element element, 197
elements

closing empty, 16
custom, 197–198, 210, 226
draggable attribute, 120
flow of content around, 202
flowchart, 38, 219
getting classlist of, 97

ellipse element in SVG, 127
em unit, 55–56
email input type, for forms, 142–143
embed element, 130
embedded SVG files, 130–132
empty elements, closing, 16
:enabled pseudo-class, 159
encapsulation, 192, 196
encoding video format, 168
end keyword, for wrap-flow property,

203–204
end value, for grid alignment

properties, 83
error-checking for form input, client-

side, 154–156
Essential Considerations for Crafting

Quality Media Queries
(Gillenwater), 45

event handlers, adding to elements, 91
event listeners, removing, 93–94
event object, 92–93
events, for touch-enabled input, 94–96
Exact Attribute Value Selector, 27
Exclusions (CSS), 202–205
exitFullScreen() method, 112
experimental features

browser support for, 101–102
W3C standardization process

and, 66
explicit entries, 186

www.it-ebooks.info

http://www.it-ebooks.info/

232 Index

explicit sectioning, 23
extends attribute, of element

element, 197
external stylesheets, use based on

media, 40

F
fallback files, 186
fallbacks, for media elements, 165–167
feature phones, 3
feature queries, 207–208

information sources, 210, 226
feGaussianBlur element, 132
feMorphology filter, 133
FFmpeg, 168

information sources, 176, 224
figure element, 24
File API, 121–123

information sources, 124, 222
file size, of images, 62
File System API, 123
File Writer API, 123
FileReader interface, 122
files, interacting with, 121–123
files child object, 121
fill attribute, 131
fill keyword, for object fit, 60–61
fillRect() method, 136
filter attribute, 132
Filter Effects, SVG and CSS

convergence, 134
filter element, 132
find() method, 97

for contacts object, 183
findAll() method, 97
finger-based touch screens, 50
Firebug, 12

message logged in console, 12–13
Firefox (browser), 3, 4

audio or video format for, 166
enabling experimental

features in, 212
experimental implementation of

JavaScript, 16
Firefox Marketplace, 188, 225

manifest file for, 180–181
Firefox OS, 4, 123

information sources, 124, 222
and WebAPIs, 123

Flash
as fallback, 166
and iOS, 161

flex container, 70
flex property, 75
flex-basis property, 75
Flexbox module, 70–78

adding flexibility, 75–76
alignment inside container, 73–75
changing content order, 71–72
checking browser for properties, 101
declaring model, 70–71
information sources, 87, 221
wrap and flow, 76–78

flex-direction property, 71
combining flex-wrap with, 77

flex-end value
for align-items property, 74
for justify-content property, 73

flex-grow property, 75
flex-order property, 72
flex-shrink property, 75
flex-start value

for align-items property, 74
for justify-content property, 73

flex-wrap property, 76–77
flow keyword, for wrap-through

property, 204
flow of content around element, 202
flow-from property, for region chain, 201
flow-into property, in CSS Regions, 201
fluid design, 53
fn (full name), in hCard pattern, 30
footer element, 22
footer for section, 24
foreignObject element, 133
form attribute for form, 146
form role, 27
formnovalidate attribute, for input

element, 156
forms. See HTML forms
found time, 8
fraction unit (fr), for grid definition,

79–80
Fragment Identifiers, SVG sprites

with, 130
frameworks, in CSS3, 18
full name (fn), in hCard pattern, 30
Fullscreen API, 111–113

information sources, 124, 222
:full-screen CSS pseudo-class, 113
fullscreenchange event, 112
fullScreenElement attribute, 112
fullScreenEnabled attribute, 111
function keywords, 134
functions, anonymous vs. named, 92

www.it-ebooks.info

http://www.it-ebooks.info/

Index 233

G
game console browsers, 6

information sources, 10, 218
gamma property, for orientation, 111
gaps between columns, 67–68
Gaussian Blur effect, for SVG

graphic, 132
Geolocation API, 108–109

information sources, 124, 222
geolocation object, 108
getContext() method, 135
getCurrentPosition() method, 108
getData() method, 120
getElementByClassName() method, 97
getElementById() method, 96
getElementByTagName() method, 96
getElementsByClassName() method, 97
getImageData() method, 137
getItems() method, 32
getSVGDocument() method, 131
getUserMedia() method, 116, 138

information sources, 124, 222
GIF file format, 125
Gillenwater, Zoe Mickley, 45, 63, 220
global scope, 208
Google, 1

audio or video format for, 166
Nexus, 6
Webmaster pages, 34

graphics. See images
grayscale devices, browsers on, 51
Grid Layout module, 18, 78–86

alignment and stacking, 83–84
Exclusions and, 204–205
grid declaration and definition,

79–80
grid template, 85–86
information sources, 87, 221
key terms, 78, 79
placing items on grid, 81–83
repeating grid lines, 81
September 2012 syntax update,

84–85
terminology, 78, 85

grid value, for display property, 79
grid-area property, 85, 86
grid-column property, 85

for grid cell reference, 81–82
grid-column-align property, 83
grid-column-position property, 84, 85
grid-columns property, 79
grid-column-span property, 82, 85

grid-definition-columns property, 84
grid-definition-rows property, 84
grid-position property, 85
grid-row property, 85

for grid cell reference, 81–82
grid-row-align property, 83
grid-row-position property, 84, 85
grid-rows property, 79
grid-row-span property, 82, 85
grid-span property, 85
grid-template property, 85
Grigsby, Jason, 10, 218
gutter, in grid, 81

H
HandBrake, 168
handheld devices, orientation, 44
Harmony, 191
Hay, Stephen, 87, 221
hCard microformat, 29

mark up, 33
header element, 22, 27
header elements (h1 to h6), 23
header for section, 24
height attribute

of video element, 163–164
of viewport, 41

Heilmann, Christian, 106, 221
hgroup element, 22, 24
Hickson, Ian, 14, 213
horizontal layout, in flex container, 71
hosted web apps, vs. packaged, 178–179
hover state, for mouse input, 50–51
html element, manifest attribute of, 185
HTML forms, 141–160

browser support, 215–216
client-side validation, 154–156
Constraint Validation API, 156–158
and CSS, 159
datalists, 146–147
information display for user,

151–154
meter element, 152–153
output element, 153–154
progress bars, 151–152

information sources, 160, 223
input types, 142–144
new attributes, 144–146

autocomplete, 145
autofocus, 144
form, 146
multiple, 145

www.it-ebooks.info

http://www.it-ebooks.info/

234 Index

HTML forms, new attributes
(continued)

placeholder, 144–145
spellcheck, 145

on-screen controls and widgets,
147–150

color, 150
dates, 148–150
numbers, 147–148

HTML parsing, JavaScript
blocking of, 90

HTML5, 13
best practices, 15–16
embedding SVG in, 130–132
new elements, 22–26

purpose, 23–24
responsive images solution, 62–63
schedule for Recommendation

status, 14
sectioning elements, downside of,

24–26
syntax for, 16
template, 14–15

HTML5 Boilerplate, 15, 20, 218
HTML5 Doctor, 38, 124, 219, 222
HTML5 Please, 18, 20
HTML5 Rocks, 124, 210, 222, 226

on Constraint Validation API,
160, 224

on image manipulation, 140, 223
HTML5 Test, 19, 20, 218
HTML5Shiv, 25
HTMLAudioElement interface, 169, 173
HTMLMediaElement interface, 169
HTMLVideoElement interface, 169
HTMLVideoFormat interface, 173
hybrid apps, 123, 177, 181–184

I
icons object, in manifest file, 180–181
id attribute

of filter element, 132
of form, 147

IE Testdrive, 139, 223
iframe elements, widths of media

feature, 42
images. See also SVG files

browser support, 215
manipulation, 137–138
problem from file size, 62

img element, 62, 128
dragging, 119

implicit sectioning, 23
@import at-rule, 40
Indexed Database (IndexedDB)

API, 119
information display for user, 151–154

meter element, 152–153
output element, 153–154
progress bars, 151–152

information sources
on CSS layout, 87, 221
on device APIs, 124, 222
on device-responsive CSS,

63–64, 220
on JavaScript, 106, 221–222
on HTML forms, 160, 223
on HTML5, 38, 219
on web platform, 20, 218

inheritance, in CSS, 195–196
inherited properties, in schema, 34
input elements in forms, 142–144
input events

in forms, listener for, 156
in JavaScript, 94–96

input mechanism media features,
50–51

input-types.html file, 143
:in-range pseudo-class, 159
interaction

with classes, 97–98
with files, 121–123

interactive content, browser assistive
technology awareness of, 26

Internet connection
image size and, 47
knowing strength of, 115–116

Internet Explorer (browser), 1, 3, 25
CSS Regions in, 210, 226
repetitions in grid, 81

Internet of Things (IoT), 2
Internet-enabled devices,

convergence, 58
invalid event, 157
:invalid pseudo-class, 159
iOS, and Flash, 161
IoT (Internet of Things), 2
iPad, 5
iPhone 3GS, physical pixel count, 45, 49
iPhone 4, 6
iPhone 5, 46
Irish, Paul, 64, 220
is attribute, of element element, 197
itemscope attribute, 31
itemtype attribute, 32, 33–34

www.it-ebooks.info

http://www.it-ebooks.info/

Index 235

J
JavaScript, 89–106

browser support, 214
for canvas element, 135
Firefox’s experimental

implementations of, 16
Firefox OS and, 123
for HTML5 and IE, 25
information sources, 106, 221–222
libraries, 89, 98–104, 200

jQuery, 98–100
Modernizr, 101–102
Mustache, 102–104
YepNope, 100–101

new features, 90–98
addEventListener method, 91–94
async and defer attributes, 90–91
CSS selectors, 96–97
DOMContentLoaded event, 94
getElementsByClassName()

method, 97
input events, 94–96
interaction with classes, 97–98

polyfills and shims, 104–105
revision, 191
testing and debugging, 51, 105
web component conflicts, 192

Jobs, Steve, 161, 175, 224
Jordesign, 64, 220
JPG file format, 125
jQTouch, 100

information sources, 106, 221
jQuery, 98–100, 200

data attributes and, 36–37
information sources, 106, 221

jQuery Mobile, 100, 106, 221
JS Bin, 105
JS Fiddle, 105
JSON text file, as manifest file, 179
justify-content property, 73–74

K
key, in Mustache, 102
keyboard, on-screen, for form input, 143
kind attribute, of track element, 167
Kindle, 6
Koblentz, Thierry, 58, 64, 220
Kobo, 6
Koch, Peter-Paul, 188, 225

L
label element, 144
LabUp!, 20, 219
landmark roles, 26–27
landscape mode, of viewport, 44
lang attribute, 145
latitude property, of coords object, 108
Lauke, Patrick, 64, 220
launch_path field, in Firefox Marketplace

manifest, 181
Lawson, Bruce, 20, 144, 160, 218, 224

New Exciting Web Technologies
(NEWT), 13

layout viewport, 48
layouts. See CSS layouts
Learning WebGL, 140, 223
length values

dynamic calculations on, 55–56
relative to viewport, 56–59

level attribute, of navigator.battery
object, 114

levelchange event, in Battery Status
API, 115

LG Optimus Vu, 6
libraries in JavaScript, 89, 98–104

jQuery, 98–100
Modernizr, 101–102
Mustache, 102–104
YepNope, 100–101

Lie, Håkon Wium, 210, 226
line element in SVG, 127
lines. See also rules (lines)

in grid, 78–79
link tag, declaring type for, 15–16
linked SVG files, 128–130
links, to script files, 90
list attribute for form, 147
listener

for addEventListener method, 91
for state changes, 52

load event, 94
load() method, for media elements, 170
loading times of web pages, JavaScript

libraries and, 98
localStorage object, 117
location-based services, 108–109
logic-less syntax, 102
longitude property, of coords object, 108
loop attribute, for media elements, 163
Lubbers, Peter, 189, 225

www.it-ebooks.info

http://www.it-ebooks.info/

236 Index

M
main axis, in Flexbox, 73
main role, 27
Manian, Divya, 28, 38, 219
manifest attribute, of html element, 185
manifest files

information sources, 188, 225
for web apps, 179–181

manifest.webapp file, 180
master entries, 186
matchMedia() method, 52
max attribute

for date or time, 149
for meter element, 152
for number input type, 148

max- prefix, for media features, 42–43
maximum keyword, for wrap-flow

property, 203
max-width property, 60
MDN (Mozilla Developer Network)

on feature queries, 210
on forms, 160
on Full Screen API, 215
on Media API and Events, 176
on media formats, 175

measurement unit
fraction unit (fr), 79–80
for viewport dimensions, 41

media. See multimedia
Media API, 169–173
media attribute, of source element,

63, 165
media elements, fallbacks, 165–167
media events, 173–174
media features, 40

device adaptation, 48–50
dimensions as basis, 41–44
input mechanism, 50–51
max- and min- prefixes for, 42–43
-webkit-device-pixel-ratio, 47

Media Fragments URI, 168–169
media queries, 17, 40–51

browser support, 213
combining and negating, 44–45
comma-separated list of, 48
information sources, 63, 220
in JavaScript, 51–53
in mobile-first methodology, 58
resolution query, 47
for screen resolution, 46–48

Media Queries Level 4 spec, script
feature, 51

media stream, element for display, 116
MediaQueryList object, 52
MediaStream API, 175
Meenan, Patrick, 20, 219
meta tag, 15
metadata, in Dublin Core, 127
metadata value, for preload attribute, 163
meter element, 114, 152–153
metered attribute, of connection

object, 115
microdata, 31–34

information sources, 38, 220
rich snippets, 34
Schema.org, 33–34

Microdata API, 32
microformats, 29–30

information sources, 38, 219
microphone, 116–117

access to data stream from, 175
Microsoft, 1

and MP4 format, 166
Surface, 6

milestones, in JS Bin, 105
Mills, Chris, 210, 226
MIME type, 165
min attribute

for date or time, 149
for meter element, 152
for number input type, 148

min- prefix, for media features, 42–43
minimum keyword, for wrap-flow

property, 203
Miro Video Converter, 168
mixins, 209
mobile devices, 3–4

information sources, 63–64, 220
media playback on, 163

mobile first methodology, 57–59
Mobile First (Wroblewski), 58, 64, 220
mobile libraries, information sources,

106, 221
Modernizr, 101–102, 200

information sources, 106, 222
Modernizr.load() method, 101
modules, in CSS, 17
monochrome query, for ebook reader, 51
month, for date input, 149
Morville, Peter, Ambient Findability,

38, 219
MouseEvent interface, 96
MozDev, 124, 222

on columns, 87, 221
Mozilla Developer Center, 189, 225

www.it-ebooks.info

http://www.it-ebooks.info/

Index 237

Mozilla Developer Network. See MDN
(Mozilla Developer Network)

Mozilla, Firefox OS and WebAPIs, 123
MP4 format, 166
Multi-column Layout module, 66–70

gaps and rules, 67–68
information sources, 87, 221
items spanning multiple rows or

columns, 82
spans and breaks, 68–70

multimedia, 161–176
advanced interaction, 174–175
browser support, 216
media elements, 162–168
subtitles and captions, 167–168

multiple attribute for form, 145
multi-screen use, 7
Mustache, 102–104

information sources, 106, 222

N
name attribute, of element element, 197
name field, in Firefox Marketplace

manifest, 181
named flow, in CSS Regions, 201
named functions, vs. anonymous

functions, 92
name-value pair, 31
naming conflicts, 192
native apps, 177
native wrappers, 123
nav element, 22
navigation devices, awareness of page

structure, 26
navigation role, 27
navigator object, 116

vibrate() method on, 113
navigator.battery object, 114
negating, media queries, 44–45
nesting elements, percentage

widths and, 54
NetFront, on PlayStation 3, 6
network entries, 186
Network Information API, 115–116
networkState property, 172
Nintendo, 1
Nintendo Wii, 6
none keyword

for preload attribute, 163
for wrap-through property, 204

Nook, 6

not operator
in feature queries, 207
in media queries, 44

novalidate attribute, of form
element, 155

nowrap value, for flex-wrap property, 76
number input, 147–148
Nyman, Robert, 124, 180, 188, 222, 225

O
object element, for embedded

SVG file, 131
object-fit property, 60
object-position property, 60, 61–62
objects

created by click event, information
contained in, 93

replaced, and responsive websites,
58–63

resizing, 60
sizing within container, 60

O’Callahan, Robert, 139, 223
offline availability, 185
.oga file extension, for audio files, 164
Ogg format, 164, 166
.ogv file extension, for video files, 164
on() method, 99
on-screen keyboard, for form input, 143
on-screen prompt

to access camera or
microphone, 116

for permission to enter fullscreen
mode, 111–112

open device labs, 19
Open Web App Manifest, 180
Opera (browser), 3, 4

audio or video format for, 166
Mobile Emulator, 19
Presto rendering engine, 212
on remote debugging, 20, 219

Opera Mini, 4
Opera TV Store, 189, 225
optimum attribute, for meter element, 153
option child element, 146
:optional pseudo-class, 159
Opus format, 166
or operator

comma separator in media
queries as, 44

for feature queries, 207
ordinal group, creating, 72

www.it-ebooks.info

http://www.it-ebooks.info/

238 Index

organization, in hCard pattern, 30
orientation

three-dimensional, information
sources, 124, 222

of viewport, 44
Orientation API, 110–111
:out-of-range pseudo-class, 159
output element, 153–154
overflow-style property, 206

P
Paciello Group Blog, 38, 219
packaged web apps, vs. hosted, 178–179
PadFone (Asus), 7
page elements, percentages for, 53–54
page structure. See also grid layout

models
navigation device awareness of, 26

Pagination Templates, information
sources, 210, 226

parent element, and column flow, 67
pattern attribute, of input type, 155
pause event, in PhoneGap project, 184
pause() method, for media element, 169
percentages, for page elements, 53
performance, 8–9

@import at-rule and, 40
permanence of data storage, 117
permission to enter fullscreen mode,

prompt for, 111–112
PhoneGap, 123, 181, 182–184

API, 182
events for, 183–184
information sources, 188, 225
permissions, 182

phones, 3–4
physical pixel count, 45
pixels, 45–46
pixels per centimeter (PPC), 45
pixels per inch (PPI), 45
placeholder attribute for form, 144–145
play event, 174
play() method, for media element, 169
PlayStation 3, NetFront, 6
plug-ins, disadvantages, 161
PNG file format, 125
Pointer Events, 94, 95–96
pointer feature, 50
pointerup event, 95
polyfills, in JavaScript, 104–105
polygon element in SVG, 127
portable devices, battery status, 114–115

portrait mode, of viewport, 44
poster property, 173
PPC (pixels per centimeter), 45
PPI (pixels per inch), 45
PPK, 63–64, 160, 220, 223
prefixes, vendor-specific, 17
preload attribute, for media

elements, 163
preprocessors, 18, 208
Presto rendering engine (Opera), 212
preventDefault() method, 93, 119, 120
progress bars, 151–152
progress element, 151–152, 171
prompt

to access camera or
microphone, 116

for permission to enter fullscreen
mode, 111–112

properties, 31
inherited, in schema, 34

property-value pairs, in feature
queries, 207

pseudo-classes for HTML5 forms, 159
information sources, 160, 224

Q
querySelector() method, 96, 137
querySelectorAll() method, 96
quirks mode, 14–15

R
range element, 171
range input, 147
raster graphics, 46
RDFa (Resource Description Format in

Attributes), 30–31, 38, 220
RDFa Core, 30
readability, characters in text

line and, 58
readAsArrayBuffer() method, 122
readAsDataURL() method, 122
readAsText() method, 122
:read-only pseudo-class, 159
:read-write pseudo-class, 159
readyState property, 173
rect element in SVG, 127–128

style for, 131
region chain, 201
Regions (CSS), 200–202
regular expressions, 155

information sources, 160, 224

www.it-ebooks.info

http://www.it-ebooks.info/

Index 239

Rel-Tag microformat, 29
rem (root em), 56–57
remoteItem() method, 118
remove() method, 97
removeEventListener() method, 93–94
repeat() function, 81
replaced objects, and responsive

websites, 58–63
requestFullScreen() method, 111–112
required attribute, of input type, 154
:required pseudo-class, 159
Resig, John, 38, 220
resizing objects, 60
resolution media query, 47
resolution of screen, 45
Resource Description Format in

Attributes (RDFa), 30–31,
38, 220

Responsive Images Community Group,
64, 221

responsive websites, 39
vs. adaptive, 53–56
browser support, 213
and replaced objects, 58–63

resume event, in PhoneGap project, 184
RGBA color model, 137
rich snippets, 34

information sources, 38, 220
right value, for object-position

property, 61
Robinson, Mike, 38, 219
role attribute, 27
root em (rem), 56–57
:root selector, 208
root-relative units, 56–57
row value, for flex-direction property, 71
row-reverse value, for flex-direction

property, 71–72
rows in graph, fraction unit for, 80
rows in grid, items spanning

multiple, 82
Rubular, 160, 224
rules (lines)

between columns, 67–68
in grid, repeating, 81

S
Safari (browser), 3
Safari mobile, 212
Samsung, 1, 189, 225
Samsung Galaxy Note II, 6
Samsung Galaxy S III, 6, 46

scalability, SVG and, 139
Scalable Vector Graphics.

See SVG (Scalable
Vector Graphics)

schema, 30
Schema.org, 33–34

information sources, 38, 220
Schulze, Dirk, 139, 223
scoped styles, 195–196
screen resolution, 45

for desktops, 3
media queries for, 46–48

screen sizes, 6
script element

defer attribute for, 90–91
in Media Queries Level 4 spec, 51

script tag, declaring type for, 15–16
scripts, initiating, 94
scrolling, 206
SDKs (software development kits), 19
search input type, for forms, 142
search role, 27
section elements, 22–24
sectioning, 22

downside of, 24–26
implicit or explicit, 23

sectioning roots, 24
sections, from Mustache, 103
Seddon, Ryan, 160, 223
seeking property, for media

elements, 171
Seidelin, Jacob, 140, 223
selector, in jQuery, 99
semantic markup

browser support, 213
importance of, 28–29
information sources, 38, 219

semantic richness, 21
session storage, 117
sessionStorage object, 117
setCustomValidity() method, 158
setData() method, 120
setItem() method, for storing item, 117
Shadow DOM, 198–199

information sources, 210, 226
shadow root, 198
shape elements in SVG, 127
shaped exclusions, 205
shape-inside property, 205
shape-outside property, 205
shims, in JavaScript, 104–105
simultaneous screening, 7

www.it-ebooks.info

http://www.it-ebooks.info/

240 Index

Sitepoint, 210, 226
sites. See websites
smart TVs

information sources, 189, 225
Internet-connected, 184

smartphones, 3–4
PPI count, 45
use stereotypes, 8

snapshots, in JS Bin, 105
soft keyboard, for form input, 143
software development kits (SDK), 19
Souder, Steve, 40
source element, 62, 64, 220
SourceGraphic keyword, 132
space-around value, for justify-content

property, 73
space-between value, for justify-content

property, 73
spans for columns, 68–70
speed, 8–9
spellcheck attribute for form, 145
sprites for icons, 129
square bracket ([]) notation, for

storing item, 117
src attribute, of track element, 167
srclang attribute, of track element, 167
srcset attribute, 62, 63
stacking, in grid layout, 83–84
standalone attribute, in XML

declaration, 127
standards mode, 15
Stark, Jonathan, 4, 10, 218
start keyword

for grid alignment properties, 83
for wrap-flow property, 203–204

statistics, information sources, 10, 217
status property, of window.applicationCache

object, 187
stdDeviation attribute, for feGaussianBlur

element, 132
step attribute, for date or time, 149
stepDown() method

for date or time, 150
for number input type, 148

stepUp() method
for date or time, 150
for number input type, 148

stereotypes, context, 8
Stevens, Luke, The Truth About HTML 5,

25, 38, 219
storage event, 118
Storey, David, 10, 218

stretch value
for align-items property, 74
for grid alignment properties, 83

stroke() method, 136
structure

browser support, 213
importance of, 21

structured data, 29
style tag, declaring type for, 15–16
styles, scoped, 195–196
stylesheets

media queries to apply to
viewport, 58

use of external based on media, 40
subsequent screening, 7
subtitles, for media files, 167–168
@supports at-rule, 102, 207
svg element, 127
SVG (Scalable Vector Graphics)

files, 125
vs. canvas, 138–139
convergence with CSS, 134–135
drawback, 135
embedded, 130–132
filters, 132–134
information sources,

139–140, 223
linked files, 128–130

format, 125, 126–135
anatomy of image, 127–128
linked files, 128–130

sprites, 129–130
SVG2, 134
swapCache() method, of window

.applicationCache object, 187
sympathetic keyboard layout, 143

T
tablets, 5, 50
tags, lowercase or uppercase

characters for, 16
:target pseudo-class, 130
Taubert, Tim, 138, 140, 223
tel input type, for forms, 143
template element, 193
templates

client-side system, 102
for grid, 85–86
and scoped styles, 196
for script tags, 104
for web components, 192–194

www.it-ebooks.info

http://www.it-ebooks.info/

Index 241

terminology, 12
testing, 19

browsers for JavaScript support, 51
in JavaScript, 105

text files, content as, 122
text input, 142
text tracks, for media files, 167–168
Theora format, 164
three-dimensional. See 3-D...
timeupdate event, 171, 174
Titanium, 184

information sources, 189, 225
toggle() method, 98
top value, for object-position

property, 61
Touch Events specifications, 94–95
touch-enabled input, events for, 94–96
touch screens

finger-based, 50
for tablets, 5

touchcancel event, 95
touchend event, 95
touchenter event, 95
TouchEvent object, 95
touchleave event, 95
touchmove event, 95
touchstart event, 95
track child element, 167

information sources, 176, 224
tracks in grid, 78, 79
Transforms module, 134
The Truth About HTML 5 (Stevens), 25,

38, 219
TV, web-enabled, 5–6
TV apps, 184
Twitter, 18

data attributes use by, 37
type attribute, for audio element, 165
type parameter, 91
typeof operator, 36

U
Ubuntu Phone, 6
UI element states pseudo-classes, 159
Unicode characters, 15
unit of measure

fraction unit (fr), 79–80
for viewport dimensions, 41

Universal Plug and Play (UPnP), 191
update() method, of window

.applicationCache object, 187

updateready event, of window
.applicationCache object, 187

UPnP (Universal Plug and Play), 191
url() function, 128
url input type, for forms, 142–143
useCapture parameter, for

addEventListener method, 91
user agents, 12. See also browsers

for data storage, 117
user-defined attributes, 35
:user-error pseudo-class, 159
users, information display for, 151–154
UTF-8, 15
UX Magazine, 10, 218

V
:valid pseudo-class, 159
validation rule, custom, 158
validation tool, for manifest files,

188, 225
validationMessage property, 158
validity property, 157
validityState object, 157–158
value attribute, for progress element, 151
value property, for output element, 153
valueAsDate property, 150
valueAsNumber property (DOM), 148
valueMissing property, 157
van Kesteren, Anne, 176, 224
var() function, 208
variables

cascading, 200, 208–209
creating with Mustache, 103

vcard class, 30
vector graphics, 46

vs. bitmaps, 126
vendor-specific prefixes, 17
version field, in Firefox Marketplace

manifest, 181
version property, in manifest file, 180
vh unit, 56
vibrate() method, on navigator

object, 113
Vibration API, 113–114
video element, 116, 162–163

additional attributes, 163–164
multiple source files for, 164

video format
encoding, 168
variation in browser support, 166

videoHeight attribute, 173

www.it-ebooks.info

http://www.it-ebooks.info/

242 Index

videoWidth attribute, 173
viewport

dimensions of, 41
length units relative to, 56–59
media query to apply stylesheet, 58
orientation of, 44

viewport meta tag, 49
@viewport at-rule, for setting viewport

parameter, 49–50
Vision Mobile, 10, 217
volume property, for media

elements, 171
volumechange event, 174
Vorbis format, 164
vw unit, 56

W
W3C (World Wide Web Consortium), 14

HTML5 specification, 20, 218
Media Fragments specification,

176, 224
widgets, 181

WAI-ARIA (Web Accessibility Initiative,
Accessible Rich Internet
Applications), 26, 38, 219

Walsh, David, 124, 222
watchPosition() method, 109
WCAG Audio Control page, 175, 224
Web Accessibility Initiative, Accessible

Rich Internet Applications
(WAI-ARIA), 26, 38, 219

Web Applications 1.0, 13
web apps, 12, 177, 178–181

hosted vs. packaged, 178–179
manifest files, 179–181

Web Audio API, 174
Web Components, 37, 192–200

custom elements, 197–198
decorators, 194–196
Shadow DOM, 198–199
templates, 192–194

web pages
experimental features, 191–210

web components, 192–200
loading times, JavaScript

libraries and, 98
web platform, 13

browser support, 213
technologies included, 19

Web Storage API, 117–119
information sources, 124, 222

WebAPIs, 123
and Firefox OS, 123

web-enabled devices, 2
web-enabled TVs, 5–6
WebGL, 138
WebGL.com, 140, 223
Webinos, 185, 189, 225
WebKit engine, 4, 19
WebKit Web Inspector, key:value pair

displayed in, 118
-webkit-device-pixel-ratio media

feature, 47
WebM format, 166, 168
WebRTC project, 116, 174–175, 176, 224
websites

adaptive vs. responsive, 53–56
for book, 18
meaning of, 12

WebSMS API, 123
WebTelephony API, 123
WebVtt format, 168

information sources, 176, 224
week, for date input, 149
weinre, 19
WHATWG, 14
widgets, 181, 188, 225
width attribute

for video element, 163–164
of viewport, 41

widthMatch() function, 52
Wilcox, Matt, 64, 220

Adaptive Images, 63, 64, 221
willValidate property, 156
window object, deviceorientation event on,

110–111
window.applicationCache object, 187
window.navigator object, 108
Windows 8, and tablets, 5
Windows Phone, 4, 19
World Wide Web Consortium (W3C), 14

HTML5 specification, 20, 218
Media Fragments specification,

176, 224
widgets, 181

wrap in flexbox, 76–78
wrap value, for flex-wrap property, 76–77
wrap-flow property, 202–203
wrappers, native, 123
wrap-reverse property, 77
wrap-through property, 204
Wroblewski, Luke, Mobile First, 58,

64, 220

www.it-ebooks.info

http://www.it-ebooks.info/

Index 243

X
x -axis, 110

rotation around, 111
XML file

manifest file as, 179
SVG file format as, 127
Widget manifest file as, 181

X-Tags, 210, 226

Y
y -axis, 110

rotation around, 111
YepNope, 100–101

information sources, 106, 221
properties used in Modernizr, 102

Z
z-axis, 110

rotation around, 111
z-index property, 84
Zakas, Nicholas, 124, 222
Zepto, 100

information sources, 106, 221
zoom level, user control over, 49
zoomed-out view, 48

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Modern Web is set in New Baskerville, TheSansMono Condensed, Futura,
and Dogma.

This book was printed and bound at Edwards Brothers Malloy in Ann
Arbor, Michigan. The paper is 60# Williamsburg Smooth, which is certified
by the Sustainable Forestry Initiative (SFI). The book uses a RepKover bind-
ing, in which the pages are bound together with a cold-set, flexible glue and
the first and last pages of the resulting book block are attached to the cover
with tape. The cover is not actually glued to the book’s spine, and when open,
the book lies flat and the spine doesn’t crack.

www.it-ebooks.info

http://www.it-ebooks.info/

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

The Book of CSS3
A Developer’s Guide to the
future of Web Design
by peter gasston

may 2011, 304 pp., $34.95
isbn 978-1-59327-286-9

LAnD of LiSp
Learn to program in Lisp,
one Game at a Time!
by conrad barski, m.d.
october 2010, 504 pp., $49.95
isbn 978-1-59327-281-4

The TAnGLeD WeB
A Guide to Securing Modern
Web Applications
by michal zalewski

november 2011, 320 pp., $49.95
isbn 978-1-59327-388-0

pyThon for kiDS
A playful introduction to programming
by jason r. briggs

december 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

eLoquenT JAvASCripT
A Modern introduction to programming
by marijn haverbeke

january 2011, 224 pp., $29.95
isbn 978-1-59327-282-1

LeArn you SoMe erLAnG
for GreAT GooD!
A Beginner’s Guide
by fred hÉbert

january 2013, 624 pp., $49.95
isbn 978-1-59327-435-1

More no-nonsense books from no STArCh preSS

upDATeS
Visit http://nostarch.com/modernweb/ for updates, errata, and other
information.

www.it-ebooks.info

http://www.it-ebooks.info/

P E T E R G A S S T O N

M U L T I - D E V I C E W E B D E V E L O P M E N T

W I T H H T M L 5 , C S S 3 , A N D J A V A S C R I P T

T H E M O D E R N W E BT H E M O D E R N W E B

$34.95 ($36.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut. SHELVE IN
:

COM
PUTERS/W

EB PROGRAM
M

ING

Today’s web technologies are evolving at near–light speed,
bringing the promise of a seamless Internet ever closer to
reality. When users can browse the Web on a three-inch

His plain-English explanations and practical examples
development, including HTML5, CSS3, and JavaScript.

emphasize the techniques, principles, and practices that

A G U I D E T OA G U I D E T O
M O D E R N W E BM O D E R N W E B

D E V E L O P M E N TD E V E L O P M E N T

Peter Gasston’s The Modern Web will guide you through
the latest and most important tools of device-agnostic web

phone screen as easily as on a fifty-inch HDTV, what’s a
developer to do?

and stay relevant as these technologies are updated.
you’ll need to easily transcend individual browser quirks

Learn how to:

multiple devices
• Plan your content so that it displays fluidly across

• Design websites to interact with devices using the most
up-to-date APIs, including Geolocation, Orientation, and
Web Storage

• Incorporate cross-platform audio and video without
using troublesome plug-ins

• Make images and graphics scalable on high-resolution
devices with SVG

• Use powerful HTML5 elements to design better forms

Turn outdated websites into flexible, user-friendly ones
that take full advantage of the unique capabilities of any
device or browser. With the help of The Modern Web,
you’ll be ready to navigate the front lines of device-
independent development.

of The Book of CSS3, Gasston has also been published

A B O U T T H E A U T H O R

Peter Gasston has been a web developer for more than
12 years in both agency and corporate settings. The author

in Smashing Magazine, A List Apart, and .net magazine.
He runs the web development blog Broken Links (http://
broken-links.com/) and lives in London, England.

T
H

E
 M

O
D

E
R

N
 W

E
B

T
H

E
 M

O
D

E
R

N
 W

E
B

www.it-ebooks.info

http://www.it-ebooks.info/

	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	The Device Landscape
	Desktop/Laptop
	Mobile
	Tablet
	TV
	The Others
	The In Betweeners

	The Multi-screen World
	Context: What We Don’t Know
	Some Context Stereotypes
	“Fast” Is the Only Context That Matters

	What You’ll Learn
	Further Reading

	Chapter 1: The Web Platform
	A Quick Note About Terminology
	Who You Are and What You Need to Know
	Getting Our Terms Straight
	The Real HTML5
	The HTML5 Template
	New Best Practices

	CSS 3 and Beyond
	Vendor-Specific Prefixes
	CSS Frameworks and Preprocessors

	Browser Support
	Test and Test and Test Some More
	Summary
	Further Reading

	Chapter 2: Structure and Semantics
	New Elements in HTML5
	What’s the Point?
	The Downside of HTML5 Sectioning Elements

	WAI-ARIA
	The Importance of Semantic Markup
	Microformats
	RDFa
	Microdata
	The Microdata API
	Microdata, Microformats, and RDFa
	Schema.org
	Rich Snippets

	Data Attributes
	The Data Attributes API
	jQuery and Data Attributes
	Data Attributes in the Wild

	Web Components: The Future of Markup?
	Summary
	Further Reading

	Chapter 3: Device-Responsive CSS
	Media Queries
	Media Features Based on Dimensions
	Combining and Negating Media Queries
	A Quick Digression: All About Pixels
	Screen Resolution Media Queries
	Device Adaptation
	Input Mechanism Media Features
	Further Media Features

	Media Queries in JavaScript
	Adaptive vs. Responsive Web Design
	The box-sizing Property
	Dynamic Calculations on Length Values

	Viewport-Relative Length Units
	Root-Relative Units
	Mobile First and Content Breakpoints

	Responsive Design and Replaced Objects
	The Image Problem
	The HTML5 Responsive Images Solution

	Summary
	Further Reading

	Chapter 4: New Approaches to CSS Layouts
	Multi-columns
	Gaps and Rules
	Spans and Breaks

	Flexbox
	Declaring the Flexbox Model
	Changing the Content Order
	Alignment Inside the Container
	Adding Some Flexibility
	Wrap and Flow

	Grid Layout
	Declaring and Defining the Grid
	Repeating Grid Lines
	Placing Items on the Grid
	Alignment and Stacking
	The September 2012 Grid Layout Syntax
	On the Grid Layout Terminology
	Grid Template

	The Further Future
	Summary
	Further Reading

	Chapter 5: Modern JavaScript
	New in JavaScript
	The async and defer Attributes
	The addEventListener Method
	The event Object
	Removing Event Listeners

	The DOMContentLoaded Event
	Input Events
	Touch Events
	Pointer Events

	CSS Selectors in JavaScript
	The getElementsByClassName() Method
	Interacting with Classes

	JavaScript Libraries
	jQuery
	YepNope
	Modernizr
	Mustache

	Polyfills and Shims
	Testing and Debugging
	Summary
	Further Reading

	Chapter 6: Device APIs
	Geolocation
	Orientation
	Fullscreen
	Vibration
	Battery Status
	Network Information
	Camera and Microphone
	Web Storage
	Drag and Drop
	Interacting with Files
	Mozilla’s Firefox OS and WebAPIs
	PhoneGap and Native Wrappers
	Summary
	Further Reading

	Chapter 7: Images and Graphics
	Comparing Vectors and Bitmaps
	Scalable Vector Graphics
	Anatomy of an SVG Image
	Linked SVG Files
	SVG Sprites
	SVG Sprites with Fragments

	Embedded SVG
	SVG Filters
	The Convergence of SVG and CSS
	A Drawback of SVG

	The canvas Element
	Image Manipulation
	WebGL

	When to Choose SVG or Canvas
	Summary
	Further Reading

	Chapter 8: New Forms
	New Input Types
	New Attributes
	autofocus
	placeholder
	autocomplete
	spellcheck
	multiple
	form

	Datalists
	On-Screen Controls and Widgets
	Numbers
	Dates
	Color

	Displaying Information to the User
	progress
	meter
	output

	Client-side Form Validation
	The Constraint Validation API
	Forms and CSS
	Summary
	Further Reading

	Chapter 9: Multimedia
	The Media Elements
	Extra Attributes for the video Element
	Multiple Source Files
	Fallbacks
	Subtitles and Captions
	Encoding

	Media Fragments
	The Media API
	Network and Ready States
	Extra Properties for Audio and Video

	Media Events
	Advanced Media Interaction
	Web Audio API
	WebRTC

	Summary
	Further Reading

	Chapter 10: Web Apps
	Web Apps
	Hosted vs. Packaged Apps
	Hosted Web Apps
	Packaged Web Apps

	Manifest Files
	The Chrome Web Store
	The Firefox Marketplace

	W3C Widgets

	Hybrid Apps
	PhoneGap
	Granting Permissions
	The PhoneGap API
	PhoneGap Events

	Titanium

	TV Apps
	Webinos
	Application Cache
	Contents of the AppCache File
	The Caching Sequence
	The AppCache API

	Summary
	Further Reading

	Chapter 11: The Future
	Web Components
	Templates
	Decorators
	Scoped Styles
	Scoped Styles and Templates

	Custom Elements
	The Shadow DOM
	Putting It All Together

	The Future of CSS
	Regions
	Exclusions
	Exclusions and Grids
	Shaped Exclusions

	Even Further Future Layouts
	Box Alignment
	Line Grid
	Paged Media

	Feature Queries
	Cascading Variables

	Summary
	Further Reading

	Appendix A: Browser Support as of March 2013
	The Browsers in Question
	Enabling Experimental Features
	Chapter 1: The Web Platform
	Chapter 2: Structure and Semantics
	Chapter 3: Device-Responsive CSS
	Chapter 4: New Approaches to CSS Layouts
	Chapter 5: Modern JavaScript
	Chapter 6: Device APIs
	Chapter 7: Images and Graphics
	Chapter 8: New Forms
	Chapter 9: Multimedia
	Chapter 10: Web Apps
	Chapter 11: The Future

	Appendix B: Further Reading
	Introduction
	Chapter 1: The Web Platform
	Chapter 2: Structure and Semantics
	Chapter 3: Device-Responsive CSS
	Chapter 4: New Approaches to CSS Layouts
	Chapter 5: Modern JavaScript
	Chapter 6: Device APIs
	Chapter 7: Images and Graphics
	Chapter 8: New Forms
	Chapter 9: Multimedia
	Chapter 10: Web Apps
	Chapter 11: The Future

	Index

