PRODUCTO DE MATRICES

Dadas dos matrices A y B, su **producto** es otra matriz P cuyos elementos se obtienen multiplicando escalarmente las filas de A por las columnas de B. De manera formal, los elementos de P son de la forma:

$$p_{ij} = \sum a_{ik}.b_{kj}$$

Para que el producto sea posible, el número de columnas de $\,A\,$ debe coincidir con el número de filas de $\,B\,$.

Si A tiene orden $m \times n$ y B tiene orden $n \times p$, entonces P será de orden $m \times p$. Es decir:

$$p_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Propiedades del producto de matrices

i.
$$(A.B).C = A.(B.C)$$

ii.
$$(A+B).C = A.C + B.C$$

iii.
$$A.(B+C) = A.B + A.C$$

iv. Dada
$$A$$
 de orden $n \times n$, existe $I_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$ de orden $n \times n$

tal que
$$A.I = I.A \quad \forall A \in \Re^{n \times n}$$

Importante

En general, el producto de matrices no es conmutativo.

Ejemplo:
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
.