WARNING:
JavaScript is turned OFF. None of the links on this concept map will
work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map, created with IHMC CmapTools, has information related to: MA PreK-12 Strand Map Weather & Climate NEEEA, 3-ESS2-1. Use graphs and tables of local weather data to describe and predict typical weather during a particular season in an area. Clarification Statements: Examples of data could include average temperature, precipitation, wind direction, and wind speed. Graphical displays should focus on pictographs and bar graphs. State Assessment Boundary: Climate change is not expected in state assessment. 3-ESS2-2. Obtain and summarize information about the climate of different regions of the world to illustrate that typical weather conditions over a year vary by region., K-ESS2-1. Use and share quantitative observations of local weather conditions to describe patterns over time. Clarification Statements: Examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month, and relative temperature. Quantitative observations should be limited to whole numbers. 3-ESS3-1. Evaluate the merit of a design solution that reduces the damage caused by weather.* Clarification Statement: Examples of design solutions to a weather-related hazard could include a barrier to prevent flooding, a wind- resistant roof, and a lightning rod., ELA: W.2.9 2-ESS2-3. Use examples obtained from informational sources to explain that water is found in the ocean, rivers and streams, lakes and ponds, and may be solid or liquid., 1-ESS1-2. Analyze provided data to identify relationships among seasonal patterns of change, including sunrise and sunset time changes, seasonal temperature and rainfall or snowfall patterns, and seasonal changes to the environment. Clarification Statement: Examples of seasonal changes to the environment can include foliage changes, bird migration, and differences in amount of insect activity. 3-ESS2-1. Use graphs and tables of local weather data to describe and predict typical weather during a particular season in an area. Clarification Statements: Examples of data could include average temperature, precipitation, wind direction, and wind speed. Graphical displays should focus on pictographs and bar graphs. State Assessment Boundary: Climate change is not expected in state assessment., 5-ESS2-1. Use a model to describe the cycling of water through a watershed through evaporation, precipitation, absorption, surface runoff, and condensation. State Assessment Boundary: Transpiration or explanations of mechanisms that drive the cycle are not expected in state assessment. 7.MS-ESS2-4. Develop a model to explain how the energy of the sun and Earth's gravity drive the cycling of water, including changes of state, as it moves through multiple pathways in Earth's hydrosphere. Clarification Statement: Examples of models can be conceptual or physical. State Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not expected in state assessment., 7.MS.ETS1-2 HS-ESS3-2. Evaluate competing design solutions for minimizing impacts of developing and using energy and mineral resources, and conserving and recycling those resources, based on economic, social, and environmental cost-benefit ratios.* See URL above for clarification., Math: K.CC.1 K-ESS2-1. Use and share quantitative observations of local weather conditions to describe patterns over time. Clarification Statements: Examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month, and relative temperature. Quantitative observations should be limited to whole numbers., 8.MS-ESS2-5. Interpret basic weather data to identify patterns in air mass interactions and the relationship of those patterns to local weather. Clarification Statements: Data includes temperature, pressure, humidity, precipitation, and wind. Examples of patterns can include air masses flow from regions of high pressure to low pressure, how sudden changes in weather can result when different air masses collide. Data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through field observations or laboratory experiments. State Assessment Boundary: Specific names of cloud types or weather symbols used on weather maps are not expected in state assessment. 8.MS-ESS2-6. Describe how interactions involving the ocean affect weather and climate on a regional scale, including the influence of the ocean temperature as mediated by energy input from the sun and energy loss due to evaporation or redistribution via ocean currents. Clarification Statement: A regional scale includes a state or multi-state perspective. State Assessment Boundary: Koppen Climate Classification names are not expected in state assessment., 7.MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. Clarification Statement: Focus should be on ecosystem characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction. HS-LS2-6. Analyze data to show ecosystems tend to maintain relatively consistent numbers and types of organisms even when small changes in conditions occur but that extreme fluctuations in conditions may result in a new ecosystem. Construct an argument with evidence that ecosystems with greater biodiversity tend to have greater resistance to change and resilience. Clarification Statement: Examples of changes in ecosystem conditions could include extreme changes, such as volcanic eruption, fires, climate changes, ocean acidification, or sea level rise. See URL above for more clarification., ELA: W.5.9 5-PS2-1. Support an argument with evidence that the gravitational force exerted by Earth on objects is directed toward Earth’s center. State Assessment Boundary: Mathematical representations of gravitational force are not expected in state assessment., 8.MS-ESS2-6. Describe how interactions involving the ocean affect weather and climate on a regional scale, including the influence of the ocean temperature as mediated by energy input from the sun and energy loss due to evaporation or redistribution via ocean currents. Clarification Statement: A regional scale includes a state or multi-state perspective. State Assessment Boundary: Koppen Climate Classification names are not expected in state assessment. HS-ESS3-1. Construct an explanation based on evidence for how the availability of key natural resources and changes due to variations in climate have influenced human activity. See URL above for clarification., 3-LS4-3 7.MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. Clarification Statement: Focus should be on ecosystem characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction., ELA: W.5.2 5-ESS2-1. Use a model to describe the cycling of water through a watershed through evaporation, precipitation, absorption, surface runoff, and condensation. State Assessment Boundary: Transpiration or explanations of mechanisms that drive the cycle are not expected in state assessment., ELA: WHST.9-10.1 HS-LS2-6. Analyze data to show ecosystems tend to maintain relatively consistent numbers and types of organisms even when small changes in conditions occur but that extreme fluctuations in conditions may result in a new ecosystem. Construct an argument with evidence that ecosystems with greater biodiversity tend to have greater resistance to change and resilience. Clarification Statement: Examples of changes in ecosystem conditions could include extreme changes, such as volcanic eruption, fires, climate changes, ocean acidification, or sea level rise. See URL above for more clarification., K-ESS2-1. Use and share quantitative observations of local weather conditions to describe patterns over time. Clarification Statements: Examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month, and relative temperature. Quantitative observations should be limited to whole numbers. 1-ESS1-2. Analyze provided data to identify relationships among seasonal patterns of change, including sunrise and sunset time changes, seasonal temperature and rainfall or snowfall patterns, and seasonal changes to the environment. Clarification Statement: Examples of seasonal changes to the environment can include foliage changes, bird migration, and differences in amount of insect activity., HS-LS2-4. Use a mathematical model to describe the transfer of energy from one trophic level to another. Explain how the inefficiency of energy transfer between trophic levels affects the relative number of organisms that can be supported at each trophic level and necessitates a constant input of energy from sunlight or inorganic compounds from the environment. See URL above for clarification. HS-LS2-5. Use a model that illustrates the roles of photosynthesis, cellular respiration, decomposition, and combustion to explain the cycling of carbon in its various forms among the biosphere, atmosphere, hydrosphere, and geosphere. See URL above for clarification., PreK-LS2-2(MA). Using evidence from the local environment explain how familiar plants and animals meet their needs where they live. Clarification Statements: Basic needs include water, food, air, shelter, and, for most plants, light. Examples of evidence can include squirrels gathering nuts for the winter and plants growing in the presence of sun and water. The local environment includes the area around the student's school, home, or adjacent community. PreK-LS2-3(MA). Give examples from the local environment of how animals and plants are dependent on one another to meet their basic needs., PreK-ESS2-5(MA). Describe how local weather changes from day to day and over the seasons and recognize patterns in those changes. Clarification Statement: Descriptions of the weather can include sunny, cloudy, rainy, warm, windy, and snowy. PreK-ESS2-6(MA). Provide examples of the impact ofweather on living things. Clarification Statement: Make connections between the weather and what they wear and cando and the weather and the needs of plants and animals for water and shelter., 7.MS-LS2-1. Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the number of organisms (size of populations) in an ecosystem. 7.MS-LS2-4. Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations. Clarification Statement: Focus should be on ecosystem characteristics varying over time, including disruptions such as hurricanes, floods, wildfires, oil spills, and construction., 8.MS-ESS1-1b. Develop and use a model of the Earth-sun system to explain the cyclical pattern of seasons, which includes the Earth’s tilt and differential intensity of sunlight on different areas of Earth across the year. Clarification Statement: Examples of models can be physical, graphical, or conceptual. HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems over different time scales result in changes in climate. Analyze and interpret data to explain that long-term changes in Earth's tilt and orbit result in cycles of climate change such as Ice Ages. See URL above for clarification.