Introducción a la teoría de juegos
Los psicólogos destacan la importancia del juego en la infancia como medio de formar la personalidad y de aprender de forma experimental a relacionarse en sociedad, a resolver problemas y situaciones conflictivas. Todos los juegos, de niños y de adultos, juegos de mesa o juegos deportivos, son modelos de situaciones conflictivas y cooperativas en las que podemos reconocer situaciones y pautas que se repiten con frecuencia en el mundo real.
El estudio de los juegos ha inspirado a científicos de todos los tiempos para el desarrollo de teorías y modelos matemáticos. La estadística es una rama de las matemáticas que surgió precisamente de los cálculos para diseñar estrategias vencedoras en juegos de azar. Conceptos tales como probabilidad, media ponderada y distribución o desviación estándar, son términos acuñados por la estadística matemática y que tienen aplicación en el análisis de juegos de azar o en las frecuentes situaciones sociales y económicas en las que hay que adoptar decisiones y asumir riesgos ante componentes aleatorios.
Pero la teoría de juegos tiene una relación muy lejana con la estadística. Su objetivo no es el análisis del azar o de los elementos aleatorios sino de los comportamientos estratégicos de los jugadores. En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al igual que en los juegos, su resultado depende de la conjunción de decisiones de diferentes agentes o jugadores. Se dice de un comportamiento que es estratégico cuando se adopta teniendo en cuenta la influencia conjunta sobre el resultado propio y ajeno de las decisiones propias y ajenas.
La técnica para el análisis de estas situaciones fue puesta a punto por un matemático, John von Neumann. A comienzos de la década de 1940 trabajó con el economista Oskar Morgenstern en las aplicaciones económicas de esa teoría. El libro que publicaron en 1944, "Theory of Games and Economic Behavior", abrió un insospechadamente amplio campo de estudio en el que actualmente trabajan miles de especialistas de todo el mundo.
La Teoría de Juegos ha alcanzado un alto grado de sofisticación matemática y ha mostrado una gran versatilidad en la resolución de problemas. Muchos campos de la Economía ¿Equilibrio General, distribución de costes, etc.¿ se han visto beneficiados por las aportaciones de este método de análisis. En el medio siglo transcurrido desde su primera formulación el número de científicos dedicados a su desarrollo no ha cesado de crecer. Y no son sólo economistas y matemáticos sino sociólogos, politólogos, biólogos o psicólogos. Existen también aplicaciones jurídicas: asignación de responsabilidades, adopción de decisiones de pleitear o conciliación, etc.
Hay dos clases de juegos que plantean una problemática muy diferente y requieren una forma de análisis distinta. Si los jugadores pueden comunicarse entre ellos y negociar los resultados se tratará de juegos con transferencia de utilidad (también llamados juegos cooperativos), en los que la problemática se concentra en el análisis de las posibles coaliciones y su estabilidad. En los juegos sin transferencia de utilidad, (también llamados juegos no cooperativos) los jugadores no pueden llegar a acuerdos previos; es el caso de los juegos conocidos como "la guerra de los sexos", el "dilema del prisionero" o el modelo "halcón-paloma".
Los modelos de juegos sin transferencia de utilidad suelen ser bipersonales, es decir, con sólo dos jugadores. Pueden ser simétricos o asimétricos según que los resultados sean idénticos desde el punto de vista de cada jugador. Pueden ser de suma cero, cuando el aumento en las ganancias de un jugador implica una disminución por igual cuantía en las del otro, o de suma no nula en caso contrario, es decir, cuando la suma de las ganancias de los jugadores puede aumentar o disminuir en función de sus decisiones. Cada jugador puede tener opción sólo a dos estrategias, en los juegos biestratégicos, o a muchas. Las estrategias pueden ser puras o mixtas; éstas consisten en asignar a cada estrategia pura una probabilidad dada. En el caso de los juegos con repetición, los que se juegan varias veces seguidas por los mismos jugadores, las estrategias pueden ser también simples o reactivas, si la decisión depende del comportamiento que haya manifestado el contrincante en jugadas anteriores.
Otros artículos sobre Teoría de Juegos incluidos en este CD-ROM o sitio web:
Introducción a la Teoría de Juegos
Aplicaciones
Bernard Guerrien
LA TEORÍA DE JUEGOS
1. LAS
SITUACIONES DE JUEGO
2. EL EQUILIBRIO DE NASH
3. JUEGOS
REPETIDOS
4. LOS JUEGOS CON INFORMACIÓN INCOMPLETA.
Oskar Morgenstern 1902-1976 |
|
En 1944, John von Neumann y Oskar Morgenstern publicaron su libro "Theory of Games and Economic Behavior" iniciando así la aplicación de la Teoría de Juegos al análisis económico. |
John C. Harsanyi 1920 -2000 |
||
En 1994 se concedió el Premio Nobel de Economía a Harsanyi, Nash y Selten por sus pioneros análisis del equilibrio en la teoría de los juegos no cooperativos. |
Aumann, Robert J. (1930-) |
Schelling, Thomas C. 1921- |
En 2005 se concedió el Premio Nobel de Economía a Rober J. Aumann y Thomas C. Schelling "por haber ampliado nuestra comprensión del conflicto y la cooperación mediante el análisis de la Teoría de los Juegos". |
En eumed.net: |
Un desfile de historias y de personajes. El cazador paleolítico, el agricultor neolítico, el rey sumerio, el ciudadano romano, el abad medieval ... Además de una historia económica de la humanidad, los comentarios intercalados a esas historias van mostrando conceptos básicos de Economía y explicando su funcionamiento. Pero además de los conceptos clásicos el autor propone su propia visión heterodoxa de muchos problemas económicos. Libro gratis |
8 al 22 de julio |
|
Turismo y Desarrollo | |
7 al 23 de octubre |
|
Globalización y Crisis Financiera | |
10 al 25 de noviembre |
|
Migraciones, causas y consecuencias | |
23 de Noviembre al 11 de Diciembre |
|
Transformación e innovación en las organizaciones | |
4 al 18 de diciembre |
|
Desarrollo Local en un Mundo Global |